Model predictive control to improve power system oscillations of SMIB with fuzzy logic controller

Author(s):  
Behnam Ahmadzade ◽  
Ghazanfar Shahgholian ◽  
Farshad Mogharrab Tehrani ◽  
Mehdi Mahdavian
Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1727
Author(s):  
Ibrahim Farouk Bouguenna ◽  
Ahmed Tahour ◽  
Ralph Kennel ◽  
Mohamed Abdelrahem

This article presents a multiple-vector finite-control-set model predictive control (MV-FCS-MPC) scheme with fuzzy logic for permanent-magnet synchronous motors (PMSMs) used in electric drive systems. The proposed technique is based on discrete space vector modulation (DSVM). The converter’s real voltage vectors are utilized along with new virtual voltage vectors to form switching sequences for each sampling period in order to improve the steady-state performance. Furthermore, to obtain the reference voltage vector (VV) directly from the reference current and to reduce the calculation load of the proposed MV-FCS-MPC technique, a deadbeat function (DB) is added. Subsequently, the best real or virtual voltage vector to be applied in the next sampling instant is selected based on a certain cost function. Moreover, a fuzzy logic controller is employed in the outer loop for controlling the speed of the rotor. Accordingly, the dynamic response of the speed is improved and the difficulty of the proportional-integral (PI) controller tuning is avoided. The response of the suggested technique is verified by simulation results and compared with that of the conventional FCS-MPC.


2011 ◽  
Vol 131 (7) ◽  
pp. 536-541 ◽  
Author(s):  
Tarek Hassan Mohamed ◽  
Abdel-Moamen Mohammed Abdel-Rahim ◽  
Ahmed Abd-Eltawwab Hassan ◽  
Takashi Hiyama

Author(s):  
Arunesh Kumar Singh ◽  
Abhinav Saxena ◽  
Nathuni Roy ◽  
Umakanta Choudhury

In this paper, performance analysis of power system network is carried out by injecting the inter-turn fault at the power transformer. The injection of inter-turn fault generates the inrush current in the network. The power system network consists of transformer, current transformer, potential transformer, circuit breaker, isolator, resistance, inductance, loads, and generating source. The fault detection and termination related to inrush current has some drawbacks and limitations such as slow convergence rate, less stability and more distortion with the existing methods. These drawbacks motivate the researchers to overcome the drawbacks with new proposed methods using wavelet transformation with sample data control and fuzzy logic controller. The wavelet transformation is used to diagnose the fault type but contribute lesser for fault termination; due to that, sample data of different signals are collected at different frequencies. Further, the analysis of collected sample data is assessed by using Z-transformation and fuzzy logic controller for fault termination. The stability, total harmonic distortion and convergence rate of collected sample data among all three methods (wavelet transformation, Z-transformation and fuzzy logic controller) are compared for fault termination by using linear regression analysis. The complete performance of fault diagnosis along with fault termination has been analyzed on Simulink. It is observed that after fault injection at power transformer, fault recovers faster under fuzzy logic controller in comparison with Z-transformation followed by wavelet transformation due to higher stability, less total harmonic distortion and faster convergence.


2019 ◽  
Vol 36 (5) ◽  
pp. 4115-4126 ◽  
Author(s):  
N. Kirn Kumar ◽  
V. Indra Gandhi

2020 ◽  
Vol 10 (16) ◽  
pp. 5467
Author(s):  
Po-Tuan Chen ◽  
Cheng-Jung Yang ◽  
Kuohsiu David Huang

To avoid unnecessary power loss during switching between the various power sources of a composite electric vehicle while achieving smooth operation, this study focuses on the development and dynamic simulation analysis of a control system for the power of a parallel composite vehicle. This system includes a power integration and distribution mechanism, which enables the two power sources of the internal combustion engine and electric motor to operate independently or in coordination to meet the different power-output requirements. The integration of the electric motor and battery-charging engine reduces the system complexity. To verify the working efficiency of the energy control strategy for the power system, the NEDC2000 cycle is used for the vehicle driving test, a fuzzy logic controller is established using Matlab/Simulink, and the speed and torque analysis of the components related to power system performance are conducted. Through a dynamic simulation, it is revealed that this fuzzy logic controller can adjust the two power sources (the motor and internal combustion engine) appropriately. The internal combustion engine can be maintained in the optimal operating region with low, medium, and high driving speeds.


Sign in / Sign up

Export Citation Format

Share Document