Comparative Evaluation of Face Detection Algorithms

Author(s):  
Ahmed Yamout ◽  
Ahmed Abdelmawgood ◽  
Ebraam Sadick ◽  
Mohamed Naguib
2018 ◽  
Vol 10 (8) ◽  
pp. 80
Author(s):  
Lei Zhang ◽  
Xiaoli Zhi

Convolutional neural networks (CNN for short) have made great progress in face detection. They mostly take computation intensive networks as the backbone in order to obtain high precision, and they cannot get a good detection speed without the support of high-performance GPUs (Graphics Processing Units). This limits CNN-based face detection algorithms in real applications, especially in some speed dependent ones. To alleviate this problem, we propose a lightweight face detector in this paper, which takes a fast residual network as backbone. Our method can run fast even on cheap and ordinary GPUs. To guarantee its detection precision, multi-scale features and multi-context are fully exploited in efficient ways. Specifically, feature fusion is used to obtain semantic strongly multi-scale features firstly. Then multi-context including both local and global context is added to these multi-scale features without extra computational burden. The local context is added through a depthwise separable convolution based approach, and the global context by a simple global average pooling way. Experimental results show that our method can run at about 110 fps on VGA (Video Graphics Array)-resolution images, while still maintaining competitive precision on WIDER FACE and FDDB (Face Detection Data Set and Benchmark) datasets as compared with its state-of-the-art counterparts.


2018 ◽  
Author(s):  
Solly Aryza

It is very challenging to recognize a face from an image due to the wide variety of face and the uncertain of face position. The research on detecting human faces in color image and in video sequence has been attracted with more and more people. In this paper, we propose a novel face detection method that achieves better detection rates. The new face detection algorithms based on skin color model in YCgCr chrominance space. Firstly, we build a skin Gaussian model in Cg-Cr color space. Secondly, a calculation of correlation coefficient is performed between the given template and the candidates. Experimental results demonstrate that our system has achieved high detection rates and low false positives over a wide range of facial variations in color, position and varying lighting conditions.


2004 ◽  
Vol 16 (6) ◽  
pp. 1163-1191 ◽  
Author(s):  
Hitoshi Imaoka ◽  
Kenji Okajima

We propose an algorithm for the detection of facial regions within input images. The characteristics of this algorithm are (1) a vast number of Gabor-type features (196,800) in various orientations, and with various frequencies and central positions, which are used as feature candidates in representing the patterns of an image, and (2) an information maximization principle, which is used to select several hundred features that are suitable for the detection of faces from among these candidates. Using only the selected features in face detection leads to reduced computational cost and is also expected to reduce generalization error. We applied the system, after training, to 42 input images with complex backgrounds (Test Set A from the Carnegie Mellon University face data set). The result was a high detection rate of 87.0%, with only six false detections. We compared the result with other published face detection algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6387
Author(s):  
Natalia Głowacka ◽  
Jacek Rumiński

As the interest in facial detection grows, especially during a pandemic, solutions are sought that will be effective and bring more benefits. This is the case with the use of thermal imaging, which is resistant to environmental factors and makes it possible, for example, to determine the temperature based on the detected face, which brings new perspectives and opportunities to use such an approach for health control purposes. The goal of this work is to analyze the effectiveness of deep-learning-based face detection algorithms applied to thermal images, especially for faces covered by virus protective face masks. As part of this work, a set of thermal images was prepared containing over 7900 images of faces with and without masks. Selected raw data preprocessing methods were also investigated to analyze their influence on the face detection results. It was shown that the use of transfer learning based on features learned from visible light images results in mAP greater than 82% for half of the investigated models. The best model turned out to be the one based on Yolov3 model (mean average precision—mAP, was at least 99.3%, while the precision was at least 66.1%). Inference time of the models selected for evaluation on a small and cheap platform allows them to be used for many applications, especially in apps that promote public health.


2019 ◽  
Vol 53 (5) ◽  
pp. 3787-3812 ◽  
Author(s):  
Rémi Domingues ◽  
Pietro Michiardi ◽  
Jérémie Barlet ◽  
Maurizio Filippone

Sign in / Sign up

Export Citation Format

Share Document