Fault analysis of wind generator connected power system using wavelet technique

Author(s):  
Y. Mahesh Babu ◽  
B. Durga Prasad ◽  
B. Vijay Vihari
2014 ◽  
Vol 556-562 ◽  
pp. 1510-1514
Author(s):  
Li Qiang Lin ◽  
Hong Wen Yan

For the low efficiency in generating candidate item sets of apriori algorithm, this paper presents a method based on property division to improve generating candidate item sets. Comparing the improved apriori algorithm with the other algorithm and the improved algorithm is applied to the power system accident cases in extreme climate. The experiment results show that the improved algorithm significantly improves the time efficiency of generating candidate item sets. And it can find the association rules among time, space, disasters and fault facilities in the power system accident cases in extreme climate. That is very useful in power system fault analysis.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 198
Author(s):  
Neeraj Priyadarshi ◽  
Amarjeet Kr. Sharma ◽  
Akash Kr. Bhoi ◽  
S N. Ahmad ◽  
Farooque Azam ◽  
...  

This paper mainly presents the fault analysis of Photovoltaic (PV) grid power system. The fuzzy logic controller (FLC) based intelligent maximum power point tracking (MPPT) algorithm has been employed in this work. Moreover, the hysteresis controller has been implemented for inverter control. Simulation results based on MATLAB/SIMULINK justify the effectiveness of the proposed PV power system under different fault operating conditions. 


Author(s):  
Ram Gopal Sharma

Fault analysis study is the important parameter of economic, reliable and secure power system planning and operation. Power system studies are important during the planning and conceptual design stages of the project. This paper presents the fault analysis on IEEE-9 bus system. The line to ground fault is created on bus 5th and analyzed the variation in Voltage, Real power, Reactive power on different buses. The fault at 5th bus of IEEE-9 bus system is analyzed on PSCAD software.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kenneth E. Okedu ◽  
Hind F. A. Barghash

The major aim for achieving the successful synchronization of a wind turbine system to the grid is to mitigate electrical and mechanical stresses on the wind generator. During transient state, the gearbox, shaft, and rotor of the wind generator could be damaged due to mechanical stress. The rotor and stator windings of the wind generator, including its insulation, could be affected. This paper undertakes an extensive analysis of the effects of the excitation parameters of the power converter Insulated Gate Bipolar Transistors (IGBTs), on the transient state performance of the Doubly Fed Induction Generator (DFIG), considering different scenarios. The optimal excitation parameters of IGBTs were used for further analysis of the wind generator, considering a new Phase-Locked-Loop (PLL) scheme. The PLL computes the phase displacement of the grid required to achieve orientation and synchronization control. Consequently, it helps in preventing power system distortion due to stator-grid interphase. This paper proposes a new approach that integrates PLL control strategy and a Series Dynamic Braking Resistor (SDBR) to augment the fault ride through capability of a variable speed wind turbine that is DFIG-based. The SDBR helps the post fault recovery of the wind generator. Simulations were run in Power System Computer Aided Design and Electromagnetic Transient state Including DC (PSCAD/EMTDC) to examine severe fault conditions, and to test the robustness of the controllers employed. The results show that the proposed hybrid control strategy aids the fast recovery of the DFIG wind generator variables during fault conditions.


Author(s):  
Anuj Singh ◽  
Dr. Sandeep Sharma ◽  
Karan Sharma ◽  
Flansha Jain ◽  
Shreyanshu Kumar Jena

A Power System is actually a vast system that requires an outstanding plan for maintaining the continual flow of electricity. When a fault occurs at the power system, number of difficulties arises because of transients in system. so to attenuate these transients, power electronics based devices like FACTS are utilized. A unified power flow controller (UPFC) is one among different power electronics controller which can dispense VAR compensation, line impedance control and phase shifting. The thought is to see potential of UPFC to require care of active and reactive power movement within the compensated line (including UPFC) and to shrink the falloff of the bus voltage in case of grounding fault within the cable. power system block consisting of simulink is used for numerical analysis. Simulation outcomes from MATLAB reflects major improvement in the overall system’s behaviour with UPFC in sustain the voltage and power flow even under severe line faults by proper injection of series voltage into the cable at the point of connection. outcomes shows how the UPFC contributes effectively to a faster regaining of the power system to the pre-fault conditions.


Sign in / Sign up

Export Citation Format

Share Document