Research on temperature field of large capacity bridge arm reactor's busbar based on circuit-magnetic-thermal field coupling calculation

Author(s):  
Junlin Zhu ◽  
Wei Zhang ◽  
Kejie Huang ◽  
Shuaibing Wang ◽  
Xiaqing Sun ◽  
...  
2011 ◽  
Vol 189-193 ◽  
pp. 639-642
Author(s):  
Sheng Zhang ◽  
Zhao Hua Wu ◽  
Hong Yan Huang ◽  
Pin Chen ◽  
Tang Wen Bi

In the thermal design of Embedded Power Chip Microwave Modules, the placement of chips on substrate has a significant effect on internal temperature field, thus, influence the reliability of the modules. In this paper, Based on BP-GA, the optimization for chips placement of EPCM is achieved by corresponding optimization program. To demonstrate the effectiveness of the results, ANSYS, finite element analysis (FEA) is carried out to assess the thermal field distribution of the optimization for chips placement. The result shows that the thermal field distributions of the optimization are consistent with the FEA results. The internal highest temperature of the initial placements is 90.369°C. After optimization, the internal highest temperature is 86.128°C, the highest temperature be reduced more than 5°C. It can effectively deal with the problem about optimize the thermal placement of EPCM chips, and improves the internal thermal distribution.


2011 ◽  
Vol 71-78 ◽  
pp. 2513-2517 ◽  
Author(s):  
Xiao Xiong Zha ◽  
Shan Shan Cheng

In order for current laboratory studies of strata performances under high temperature to be applied in Underground Coal Gasification (UCG) technology, the temperature scope (range) of UCG must be studied. Based on the heat conduction differential equation, this paper simulates the transverse section temperature distribution of UCG in the multi-physics coupling field. It demonstrates that the strata properties at a range of two meters are affected by high temperature, and the influence on sandstone is more obvious than that of coal. The temperature curves show a trend of linear to nonlinear as time goes. This paper presents the precedent of using multi-field coupling calculation to simulate UCG.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 52-56
Author(s):  
Dawid Wajnert ◽  
Bronisław Tomczuk

AbstractThis paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.


2020 ◽  
Vol 11 (2) ◽  
pp. 29
Author(s):  
Haojie Xue ◽  
Di Tan ◽  
Shuaishuai Liu ◽  
Meng Yuan ◽  
Chunming Zhao

In this paper, a 15 KW in-wheel motor (IWM) is taken as the research object, and the coupling factors among the electromagnetic field, temperature field and flow field are analyzed, and the strong and weak coupling factors between the three fields are clarified, and by identifying the strong and weak coupling factors between the three fields, a three-field coupling analysis model for IWM with appropriate complexity is established, and the validity of the model is verified. In a certain driving condition, the electromagnetic field, temperature field and flow field characteristics of IWM are analyzed with the multi-field coupling model. The result shows that, after the IWM runs 8440 s under driving conditions, in this paper, the IWM electromagnetic torque of the rated working condition is 134.2 Nm, and IWM the electromagnetic torque of the peak working condition is 451.36 Nm, and the power requirement of the motor can be guaranteed. The highest temperature of the IWM is 150 °C, which does not exceed the insulation grade requirements of the motor (155 °C), the highest temperature of the permanent magnet (PM) is 65.6 °C, and it does not exceed the highest operating temperature of the PM, and ensures the accurate calculation of components loss and the temperature of the motor. It can be found, through research, that the electromagnetic torque difference between unidirectional coupling and bidirectional coupling is 3.2%, the maximum temperature difference is 7.98% in the three-field coupling analysis of IWM under rated working conditions. Therefore, it is necessary to consider the influence of coupling factors on the properties of motor materials when analyzing the electromagnetic field, temperature field and flow field of IWM; it also provides some reference value for the simulation analysis of IWM in the future.


2011 ◽  
Vol 189-193 ◽  
pp. 2269-2273
Author(s):  
Chun Yue Huang ◽  
Tian Ming Li ◽  
Ying Liang ◽  
He Geng Wei

In the thermal design of embedded multi-chip module (MCM), the placement of chips has a significant effect on temperature field distributing, thus influences the reliability of the embedded MCM. The thermal placement optimization of chips in embedded MCM was studied in this paper, the goal of this work is to decrease temperature and achieve uniform thermal field distribution within embedded MCM. By using ANSYS the finite element analysis model of embedded MCM was developed, the temperature field distributing was calculated. Based on genetic algorithms, chips placement optimization algorithm of embedded MCM was proposed and the optimization chips placement of embedded MCM was achieved by corresponding optimization program. To demonstrate the effectiveness of the obtained optimization chips placement, finite element analysis (FEA) was carried out to assess the thermal field distribution of the optimization chips placement in embedded MCM by using ANSYS. The result shows that without chips placement optimizing the maximum temperature and temperature difference in embedded MCM model are 87.963°C and 2.189°C respectively, by using chips placement optimization algorithm the maximum temperature drop than the original 0.583°C and the temperature difference is only 0.694°C . It turns out that the chip placement optimization approach proposed in this work can be effective in providing thermal optimal design of chip placement in embedded MCM.


Author(s):  
Jingli Li ◽  
Liying Guo ◽  
Peng Hu ◽  
Yuanbo Li ◽  
Yu Zhang ◽  
...  

During HVDC earth return operation systems, a high magnitude current will be injected into soil through earth electrode, the potential on the surface would change widely and produce unfavorable effects on the AC systems around. This paper presents an effective finite element method (FEM) coupling electric field with thermal field to evaluate the electrical field induced by the injected DC current. Firstly, owe to the characteristic of FEM, this method can consider arbitrary soil and earth electrode structure. Secondly, by setting the electrical and thermal parameters of soil as a function of temperature at the same time, the dynamic coupling process of electric field and thermal field is simulated accurately. Thirdly, to deal with the singular point in FEM subdivision and the huge computation in traditional three-dimensional FEM, the FEM coupling 2-D earth electrode with 3-D soil based on "shell" theory is introduced. Finally, based on the suggested method, the effect of abnormal resistance region (ARR) near DC earth electrode on electric field distribution is analyzed.


Sign in / Sign up

Export Citation Format

Share Document