The Effect of Road Congestion Charge on Travel Departure Time Choice Based on Numerical Analysis

Author(s):  
Fang Xueyang
2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Yunqiang Xue ◽  
Huishu Fan ◽  
Hongzhi Guan

In order to better understand how commuters decide departure time considering parking space shortage and commuters’ bounded rationality, the reference point hypothesis of prospect theory is applied in the departure time decision-making. Commuter personal perception differences, the road congestion situation, destination parking status, and other factors were also analysed in the influence of commuter departure time choice. Based on prospect theory, an experiment was designed to investigate the intention of the commuter departure time choice. The experiment results show that the commuter’s travel satisfaction and the departure time choice of the next trip are related to the parking space residual status after the commuter arrives at the destination. The satisfaction degree of the commuter is reduced, with the decrease of the remaining parking spaces. If the commuter is satisfied with the travel result, the commuter’s departure time of next trip tends to be later. In the case of illegal parking, different penalty measures may lead to different decisions of next departure time choice. A commuter tends to depart earlier when more severe punishment for illegal parking is enforced. The research results can reveal to some degree the travellers’ departure time choice behaviour when they face the risk of no parking spaces and provide a theoretical and practical support for parking management and car travelling decision.


Author(s):  
Markus Friedrich ◽  
Matthias Schmaus ◽  
Jonas Sauer ◽  
Tobias Zündorf

This paper investigates existing departure time models for a schedule-based transit assignment and their parametrization. It analyzes the impact of the temporal resolution of travel demand and suggests functions for evaluating the adaptation time as part of the utility of a path. The adaptation time quantifies the time between the preferred and the scheduled departure times. The findings of the analysis suggested that travel demand should be discretized into intervals of 1 min, with interval borders right between the full minute, that is, ±0.5 min. It was shown that longer time intervals led to arbitrary run volumes, even for origin–destination pairs with just one transit line and a fixed headway. Although a linear relationship between adaptation time and adaptation disutility is a common assumption in several publications, it cannot represent certain types of passenger behavior. For some trip purposes, passengers may be insensitive to small adaptation times, but highly sensitive to large adaptations. This requires a nonlinear evaluation function.


Sign in / Sign up

Export Citation Format

Share Document