Simulation of the Operation of the Vibration Amplitude Stabilization Subsystem

Author(s):  
K. A. Palaguta ◽  
B. V. Kirilichev ◽  
N. V. Grunenkov
Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1054
Author(s):  
Yongmeng Liu ◽  
Yingjie Mei ◽  
Chuanzhi Sun ◽  
Pinghuan Xiao ◽  
Ruirui Li ◽  
...  

The unbalanced exciting force of high-speed rotary asymmetric rotor equipment is the main factor causing rotor vibration. In order to effectively suppress the vibration of the asymmetric rotor equipment, the paper establishes a multistage asymmetric rotor coaxial measurement stacking method that minimizes the exciting force. By analyzing the propagation process of the centroid of the multistage asymmetric rotor assembly and analyzing the relationship between the geometric center and the centroid of a single asymmetric rotor, a multistage asymmetric unbalanced rotor propagation model based on geometric center stacking is established. The genetic algorithm is used to optimize the unbalance of the multistage asymmetric rotors. Combined with the vibration principle under the exciting force, the vibration amplitude of the left bearing at different rotation speeds under the minimization of the exciting force and the random assembly phase is analyzed. Finally, the experimental asymmetric rotors are dynamically measured, combined with the asymmetric rotors’ geometric error measurement experiment. The experimental results confirm that the vibration amplitude of the assembly phase with the minimum exciting force is smaller than the vibration amplitude under the random assembly phase at three-speed modes, and the optimization rate reached 73.2% at 9000 rpm, which proves the effectiveness of the assembly method in minimizing the exciting force.


2021 ◽  
Vol 156 ◽  
pp. 107625
Author(s):  
Xiao-Feng Geng ◽  
Hu Ding ◽  
Xiao-Ye Mao ◽  
Li-Qun Chen

2011 ◽  
Vol 66-68 ◽  
pp. 933-936
Author(s):  
Xian Jie Meng

A one degree of freedom nonlinear dynamics model of self-excited vibration induced by dry-friction was built firstly, the numerical method was taken to study the impacts of structure parameters on self-excited vibration. The calculation result shows that the variation of stiffness can change the vibration amplitude and frequency of the self-excited vibration, but can not eliminate it, Along with the increase of system damping the self-excite vibration has the weakened trend and there a ritical damping, when damping is greater than it the self-excite vibration will be disappeared.


2011 ◽  
Vol 42 (10) ◽  
pp. 9-14
Author(s):  
L.Y. Liu ◽  
J.Y. Li ◽  
X.J. Yin

To study the vibration reduction performance of damped rail, we take the standard rail and labyrinth constrained damped rail as the study target. By testing the vibration performance of both standard rail and labyrinth constrained damped rail in an anechoic room, we use the time-domain analysis to study the vibration changes with time passing. The results showed that: the labyrinth constrained damped rail vibration can effectively reduce the vibration amplitude and duration. Under the radial impact load, compared to the standard rail, vibration acceleration attenuation of the labyrinth constrained damped rail is 5% −19%, time of vibration and attenuation greater than 94%; under the axial impact load, compared to the standard rail, vibration acceleration attenuation of the labyrinth constrained damped rail is 9% −21%, time of vibration and attenuation greater than 92%. The results have provided an experimental basis for the design of new constrained damped rail.


2012 ◽  
Vol 217-219 ◽  
pp. 1567-1570
Author(s):  
A.K.M. Nurul Amin ◽  
Muammer Din Arif ◽  
Syidatul Akma Sulaiman

Chatter is detrimental to turning operations and leads to inferior surface topography, reduced productivity, dimensional accuracy, and shortened tool life. Avoidance of chatter has mostly been through reliance on heuristics such as: limiting material removal rates or selecting low spindle speeds and shallow depth of cuts. But, modern industries demand increased output and not steady operational limits. Various research efforts have therefore focused on developing mathematical models for chatter formation. However, as yet there is no existent model that meets all experimental verification. This research employed a novel technique based on the synergy of statistical modeling and experimental investigations in order to develop an effective empirical mathematical model for chatter amplitude and to subsequently find optimal machining conditions. Ti-6Al-4V, Titanium alloy, was used as the work-piece due to its increased popularity in applications related to aerospace, automotive, nuclear, medical, marine etc. A sequence of 15 experimental runs was conducted based on a small Central Composite Design (CCD) model in Response Surface Methodology (RSM). The primary (independent) parameters were: cutting speed, feed, and depth of cut. The tool overhang was kept constant at 70 mm. An engine lathe (Harrison M390) was employed for turning purposes. The data acquisition system comprised a vibration sensor (accelerometer) and a signal conditioning unit. The resultant vibrations were analyzed using the DASYLab 5.6 software. The best model was found to be quadratic which had a confidence level of 95% (ANOVA) and insignificant Lack of Fit (LOF) in Fit and Summary analyses. Desirability Function (DF) approach predicted minimum vibration amplitude of 0.0276 Volts and overlay plots identified two preferred machining regimes for optimal vibration amplitude.


Sign in / Sign up

Export Citation Format

Share Document