Rapid Human Body Detection in Disaster Sites Using Image Processing from Unmanned Aerial Vehicle (UAV) Cameras

Author(s):  
Mbaitiga Zacharie ◽  
Satoshi Fuji ◽  
Shimoji Minori
2017 ◽  
Vol 15 (41) ◽  
pp. 9-26
Author(s):  
Andrés Espinal Rojas ◽  
Andrés Arango Espinal ◽  
Luis Ramos ◽  
Jorge Humberto Erazo Aux

This paper describes the development and implementation of a six-pointed Unmanned Aerial Vehicle [UAV] prototype, designed for finding lost people in hard to access areas, using Arduino MultiWii platform. A platform capable of performing a stable flight to identify people through an on-board camera and an image processing algorithm was developed. Although the use of UAV represents a low cost and quick response –in terms of displacement– solution, capable to prevent or reduce the number of deaths of lost people in away places, also represents a technological challenge, since the recognition of objects from an aerial view is difficult, due to the distance of the UAV to the objective, the UAV’s position and its constant movement. The solution proposed implements an aerial device that performs the image capture, wireless transmission and image processing while it is in a controlled and stable flight.


2020 ◽  
Author(s):  
Lucas Rossi ◽  
André Backes ◽  
Jefferson Souza

The detection of Aedes aegypti mosquito is essential in the prevention process of serious diseases such as dengue, yellow fever, chikungunya, and Zika virus. Common approaches consist of surveillance agents who need to enter residences to find and eliminate these outbreaks, but often they are unable to do this work due to the absence or resistance of the resident. This paper proposes an automatic system that uses aerial images obtained through a camera coupled from an Unmanned Aerial Vehicle (UAV) to identify rain gutters from a shed that may be mosquitoes’ foci. We use Digital Image Processing (DIP) techniques to differentiate the objects that may or may not be those foci of the mosquito-breeding. The experimental results show that the system is capable of automatically detecting the appropriately mosquito-breeding location.


Author(s):  
Adil Koray Yıldız ◽  
Hakan Keles ◽  
Servet Aras

Some vegetative properties measured in fruit trees are important indicators in examining of plant growth calculation, estimation of leaf area index in evapotranspiration, fertilizer requirement etc. These measurements reflect the effects of the cultivation treatments in many areas of commercial growing and scientific studies. One of the most important measurements is the status of the canopy development. Canopy width, area and volume can be measured with some calculations. However, more technological equipment may be needed to reduce work and labor, and to make the results more precise and clearer. Recently, unmanned aerial vehicles, which have become widespread, have a wide potential for use in agriculture. By using image processing methods, it is possible to make more objective and high accuracy evaluations much faster. In this study, the images of the apple trees (Malus domestica Borkh) cultivar Golden grafted onto MM106 rootstock, were taken by light unmanned aerial vehicle to calculate the canopy area and then these images were analyzed using image processing methods for calculating canopy areas. Both circular and elliptical calculation methods were used. The area calculations with image processing methods were compared with the areas obtained manually. Comparisons were made by regression analysis. For the most successful method R value was 0.9662 for elliptic area and 0.9346 for circular area which was calculated by image processing. The results demonstrated that the image processing can be an alternative method to determine the canopy area according to accuracy ratios.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Léa Tresch ◽  
Yue Mu ◽  
Atsushi Itoh ◽  
Akito Kaga ◽  
Kazunori Taguchi ◽  
...  

Microplot extraction (PE) is a necessary image processing step in unmanned aerial vehicle- (UAV-) based research on breeding fields. At present, it is manually using ArcGIS, QGIS, or other GIS-based software, but achieving the desired accuracy is time-consuming. We therefore developed an intuitive, easy-to-use semiautomatic program for MPE called Easy MPE to enable researchers and others to access reliable plot data UAV images of whole fields under variable field conditions. The program uses four major steps: (1) binary segmentation, (2) microplot extraction, (3) production of ∗.shp files to enable further file manipulation, and (4) projection of individual microplots generated from the orthomosaic back onto the raw aerial UAV images to preserve the image quality. Crop rows were successfully identified in all trial fields. The performance of the proposed method was evaluated by calculating the intersection-over-union (IOU) ratio between microplots determined manually and by Easy MPE: the average IOU (±SD) of all trials was 91% (±3).


Sign in / Sign up

Export Citation Format

Share Document