Plant Phenomics
Latest Publications


TOTAL DOCUMENTS

87
(FIVE YEARS 87)

H-INDEX

7
(FIVE YEARS 7)

Published By American Association For The Advancement Of Science (AAAS)

2643-6515

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Yanjie Li ◽  
Honggang Sun ◽  
Federico Tomasetto ◽  
Jingmin Jiang ◽  
Qifu Luan

The internal cycling of nitrogen (N) storage and consumption in trees is an important physiological mechanism associated with tree growth. Here, we examined the capability of near-infrared spectroscopy (NIR) to quantify the N concentration across tissue types (needle, trunk, branch, and root) without time and cost-consuming. The NIR spectral data of different tissues from slash pine trees were collected, and the N concentration in each tissue was determined using standard analytical method in laboratory. Partial least squares regression (PLSR) models were performed on a set of training data randomly selected. The full-length spectra and the significant multivariate correlation (sMC) variable selected spectra were used for model calibration. Branch, needle, and trunk PLSR models performed well for the N concentration using both full length and sMC selected NIR spectra. The generic model preformatted a reliable accuracy with R2C and R2CV of 0.62 and 0.66 using the full-length spectra, and 0.61 and 0.65 using sMC-selected spectra, respectively. Individual tissue models did not perform well when being used in other tissues. Five significantly important regions, i.e., 1480, 1650, 1744, 2170, and 2390 nm, were found highly related to the N content in plant tissues. This study evaluates a rapid and efficient method for the estimation of N content in different tissues that can help to serve as a tool for tree N storage and recompilation study.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Liang Gong ◽  
Xiaofeng Du ◽  
Kai Zhu ◽  
Ke Lin ◽  
Qiaojun Lou ◽  
...  

The automated measurement of crop phenotypic parameters is of great significance to the quantitative study of crop growth. The segmentation and classification of crop point cloud help to realize the automation of crop phenotypic parameter measurement. At present, crop spike-shaped point cloud segmentation has problems such as fewer samples, uneven distribution of point clouds, occlusion of stem and spike, disorderly arrangement of point clouds, and lack of targeted network models. The traditional clustering method can realize the segmentation of the plant organ point cloud with relatively independent spatial location, but the accuracy is not acceptable. This paper first builds a desktop-level point cloud scanning apparatus based on a structured-light projection module to facilitate the point cloud acquisition process. Then, the rice ear point cloud was collected, and the rice ear point cloud data set was made. In addition, data argumentation is used to improve sample utilization efficiency and training accuracy. Finally, a 3D point cloud convolutional neural network model called Panicle-3D was designed to achieve better segmentation accuracy. Specifically, the design of Panicle-3D is aimed at the multiscale characteristics of plant organs, combined with the structure of PointConv and long and short jumps, which accelerates the convergence speed of the network and reduces the loss of features in the process of point cloud downsampling. After comparison experiments, the segmentation accuracy of Panicle-3D reaches 93.4%, which is higher than PointNet. Panicle-3D is suitable for other similar crop point cloud segmentation tasks.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Sara Mardanisamani ◽  
Tewodros W. Ayalew ◽  
Minhajul Arifin Badhon ◽  
Nazifa Azam Khan ◽  
Gazi Hasnat ◽  
...  

To develop new crop varieties and monitor plant growth, health, and traits, automated analysis of aerial crop images is an attractive alternative to time-consuming manual inspection. To perform per-microplot phenotypic analysis, localizing and detecting individual microplots in an orthomosaic image of a field are major steps. Our algorithm uses an automatic initialization of the known field layout over the orthomosaic images in roughly the right position. Since the orthomosaic images are stitched from a large number of smaller images, there can be distortion causing microplot rows not to be entirely straight and the automatic initialization to not correctly position every microplot. To overcome this, we have developed a three-level hierarchical optimization method. First, the initial bounding box position is optimized using an objective function that maximizes the level of vegetation inside the area. Then, columns of microplots are repositioned, constrained by their expected spacing. Finally, the position of microplots is adjusted individually using an objective function that simultaneously maximizes the area of the microplot overlapping vegetation, minimizes spacing variance between microplots, and maximizes each microplot’s alignment relative to other microplots in the same row and column. The orthomosaics used in this study were obtained from multiple dates of canola and wheat breeding trials. The algorithm was able to detect 99.7% of microplots for canola and 99% for wheat. The automatically segmented microplots were compared to ground truth segmentations, resulting in an average DSC of 91.2% and 89.6% across all microplots and orthomosaics in the canola and wheat datasets.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenjuan Li ◽  
Alexis Comar ◽  
Marie Weiss ◽  
Sylvain Jay ◽  
Gallian Colombeau ◽  
...  

Multispectral observations from unmanned aerial vehicles (UAVs) are currently used for precision agriculture and crop phenotyping applications to monitor a series of traits allowing the characterization of the vegetation status. However, the limited autonomy of UAVs makes the completion of flights difficult when sampling large areas. Increasing the throughput of data acquisition while not degrading the ground sample distance (GSD) is, therefore, a critical issue to be solved. We propose here a new image acquisition configuration based on the combination of two focal length (f) optics: an optics with f=4.2 mm is added to the standard f=8 mm (SS: single swath) of the multispectral camera (DS: double swath, double of the standard one). Two flights were completed consecutively in 2018 over a maize field using the AIRPHEN multispectral camera at 52 m altitude. The DS flight plan was designed to get 80% overlap with the 4.2 mm optics, while the SS one was designed to get 80% overlap with the 8 mm optics. As a result, the time required to cover the same area is halved for the DS as compared to the SS. The georeferencing accuracy was improved for the DS configuration, particularly for the Z dimension due to the larger view angles available with the small focal length optics. Application to plant height estimates demonstrates that the DS configuration provides similar results as the SS one. However, for both the DS and SS configurations, degrading the quality level used to generate the 3D point cloud significantly decreases the plant height estimates.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
M. R. Shao ◽  
N. Jiang ◽  
M. Li ◽  
A. Howard ◽  
K. Lehner ◽  
...  

The root system is critical for the survival of nearly all land plants and a key target for improving abiotic stress tolerance, nutrient accumulation, and yield in crop species. Although many methods of root phenotyping exist, within field studies, one of the most popular methods is the extraction and measurement of the upper portion of the root system, known as the root crown, followed by trait quantification based on manual measurements or 2D imaging. However, 2D techniques are inherently limited by the information available from single points of view. Here, we used X-ray computed tomography to generate highly accurate 3D models of maize root crowns and created computational pipelines capable of measuring 71 features from each sample. This approach improves estimates of the genetic contribution to root system architecture and is refined enough to detect various changes in global root system architecture over developmental time as well as more subtle changes in root distributions as a result of environmental differences. We demonstrate that root pulling force, a high-throughput method of root extraction that provides an estimate of root mass, is associated with multiple 3D traits from our pipeline. Our combined methodology can therefore be used to calibrate and interpret root pulling force measurements across a range of experimental contexts or scaled up as a stand-alone approach in large genetic studies of root system architecture.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zane K. J. Hartley ◽  
Aaron S. Jackson ◽  
Michael Pound ◽  
Andrew P. French

3D reconstruction of fruit is important as a key component of fruit grading and an important part of many size estimation pipelines. Like many computer vision challenges, the 3D reconstruction task suffers from a lack of readily available training data in most domains, with methods typically depending on large datasets of high-quality image-model pairs. In this paper, we propose an unsupervised domain-adaptation approach to 3D reconstruction where labelled images only exist in our source synthetic domain, and training is supplemented with different unlabelled datasets from the target real domain. We approach the problem of 3D reconstruction using volumetric regression and produce a training set of 25,000 pairs of images and volumes using hand-crafted 3D models of bananas rendered in a 3D modelling environment (Blender). Each image is then enhanced by a GAN to more closely match the domain of photographs of real images by introducing a volumetric consistency loss, improving performance of 3D reconstruction on real images. Our solution harnesses the cost benefits of synthetic data while still maintaining good performance on real world images. We focus this work on the task of 3D banana reconstruction from a single image, representing a common task in plant phenotyping, but this approach is general and may be adapted to any 3D reconstruction task including other plant species and organs.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yan Zhao ◽  
Bangyou Zheng ◽  
Scott C. Chapman ◽  
Kenneth Laws ◽  
Barbara George-Jaeggli ◽  
...  

In plant breeding, unmanned aerial vehicles (UAVs) carrying multispectral cameras have demonstrated increasing utility for high-throughput phenotyping (HTP) to aid the interpretation of genotype and environment effects on morphological, biochemical, and physiological traits. A key constraint remains the reduced resolution and quality extracted from “stitched” mosaics generated from UAV missions across large areas. This can be addressed by generating high-quality reflectance data from a single nadir image per plot. In this study, a pipeline was developed to derive reflectance data from raw multispectral UAV images that preserve the original high spatial and spectral resolutions and to use these for phenotyping applications. Sequential steps involved (i) imagery calibration, (ii) spectral band alignment, (iii) backward calculation, (iv) plot segmentation, and (v) application. Each step was designed and optimised to estimate the number of plants and count sorghum heads within each breeding plot. Using a derived nadir image of each plot, the coefficients of determination were 0.90 and 0.86 for estimates of the number of sorghum plants and heads, respectively. Furthermore, the reflectance information acquired from the different spectral bands showed appreciably high discriminative ability for sorghum head colours (i.e., red and white). Deployment of this pipeline allowed accurate segmentation of crop organs at the canopy level across many diverse field plots with minimal training needed from machine learning approaches.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Etienne David ◽  
Mario Serouart ◽  
Daniel Smith ◽  
Simon Madec ◽  
Kaaviya Velumani ◽  
...  

The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience, a few avenues for improvements have been identified regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse, and less noisy than the GWHD_2020 version.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Shichao Jin ◽  
Yanjun Su ◽  
Yongguang Zhang ◽  
Shilin Song ◽  
Qing Li ◽  
...  

Plant growth rhythm in structural traits is important for better understanding plant response to the ever-changing environment. Terrestrial laser scanning (TLS) is a well-suited tool to study structural rhythm under field conditions. Recent studies have used TLS to describe the structural rhythm of trees, but no consistent patterns have been drawn. Meanwhile, whether TLS can capture structural rhythm in crops is unclear. Here, we aim to explore the seasonal and circadian rhythms in maize structural traits at both the plant and leaf levels from time-series TLS. The seasonal rhythm was studied using TLS data collected at four key growth periods, including jointing, bell-mouthed, heading, and maturity periods. Circadian rhythms were explored by using TLS data acquired around every 2 hours in a whole day under standard and cold stress conditions. Results showed that TLS can quantify the seasonal and circadian rhythm in structural traits at both plant and leaf levels. (1) Leaf inclination angle decreased significantly between the jointing stage and bell-mouthed stage. Leaf azimuth was stable after the jointing stage. (2) Some individual-level structural rhythms (e.g., azimuth and projected leaf area/PLA) were consistent with leaf-level structural rhythms. (3) The circadian rhythms of some traits (e.g., PLA) were not consistent under standard and cold stress conditions. (4) Environmental factors showed better correlations with leaf traits under cold stress than standard conditions. Temperature was the most important factor that significantly correlated with all leaf traits except leaf azimuth. This study highlights the potential of time-series TLS in studying outdoor agricultural chronobiology.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
David M. Deery ◽  
Hamlyn G. Jones

Field phenomics has been identified as a promising enabling technology to assist plant breeders with the development of improved cultivars for farmers. Yet, despite much investment, there are few examples demonstrating the application of phenomics within a plant breeding program. We review recent progress in field phenomics and highlight the importance of targeting breeders’ needs, rather than perceived technology needs, through developing and enhancing partnerships between phenomics researchers and plant breeders.


Sign in / Sign up

Export Citation Format

Share Document