Terahertz characterization of construction materials for remote gas, sensing

Author(s):  
T. Ikari ◽  
R. Fukasawa
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2911
Author(s):  
Margarida Gonçalves ◽  
Inês Silveirinha Vilarinho ◽  
Marinélia Capela ◽  
Ana Caetano ◽  
Rui Miguel Novais ◽  
...  

Ordinary Portland Cement is the most widely used binder in the construction sector; however, a very high carbon footprint is associated with its production process. Consequently, more sustainable alternative construction materials are being investigated, namely, one-part alkali activated materials (AAMs). In this work, waste-based one-part AAMs binders were developed using only a blast furnace slag, as the solid precursor, and sodium metasilicate, as the solid activator. For the first time, mortars in which the commercial sand was replaced by two exhausted sands from biomass boilers (CA and CT) were developed. Firstly, the characterization of the slag and sands (aggregates) was performed. After, the AAMs fresh and hardened state properties were evaluated, being the characterization complemented by FTIR and microstructural analysis. The binder and the mortars prepared with commercial sand presented high compressive strength values after 28 days of curing-56 MPa and 79 MPa, respectively. The mortars developed with exhausted sands exhibit outstanding compressive strength values, 86 and 70 MPa for CT and CA, respectively, and the other material’s properties were not affected. Consequently, this work proved that high compressive strength waste-based one-part AAMs mortars can be produced and that it is feasible to use another waste as aggregate in the mortar’s formulations: the exhausted sands from biomass boilers.


2021 ◽  
Vol 14 ◽  
pp. e00496
Author(s):  
Abdellah Mellaikhafi ◽  
Amine Tilioua ◽  
Hanène Souli ◽  
Mohammed Garoum ◽  
Moulay Ahmed Alaoui Hamdi

2021 ◽  
Vol 258 ◽  
pp. 117643
Author(s):  
Nour S. Abdel Rahman ◽  
Yaser E. Greish ◽  
Saleh T. Mahmoud ◽  
Naser N. Qamhieh ◽  
Hesham F. El-Maghraby ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 81-88
Author(s):  
Miguel A. González-Montijo ◽  
Hildélix Soto-Toro ◽  
Cristian Rivera-Pérez ◽  
Silvia Esteves-Klomsingh ◽  
Oscar Marcelo Suárez

AbstractHistorically known for being one of the major pollutants in the world, the construction industry, always in constant advancement and development, is currently evolving towards more environmentally friendly technologies and methods. Scientists and engineers seek to develop and implement green alternatives to conventional construction materials. One of these alternatives is to introduce an abundant, hard to recycle, material that could serve as a partial aggregate replacement in masonry bricks or even in a more conventional concrete mixture. The present work studied the use of 3 different types of repurposed plastics with different constitutions and particle size distribution. Accordingly, several brick and concrete mix designs were developed to determine the practicality of using these plastics as partial aggregate replacements. After establishing proper working material ratios for each brick and concrete mix, compression tests as well as tensile tests for the concrete mixes helped determine the structural capacity of both applications. Presented results proved that structural strength can indeed be reached in a masonry unit, using up to a 43% in volume of plastic. Furthermore, a workable structural strength for concrete can be achieved at fourteen days of curing, using up to a 50% aggregate replacement. A straightforward cost assessment for brick production was produced as well as various empirical observations and recommendations concerning the feasibility of each repurposed plastic type examined.


Nanophotonics ◽  
2014 ◽  
Vol 3 (4-5) ◽  
pp. 329-341 ◽  
Author(s):  
Raji Shankar ◽  
Marko Lončar

AbstractThe mid-infrared (IR) wavelength region (2–20 µm) is of great interest for a number of applications, including trace gas sensing, thermal imaging, and free-space communications. Recently, there has been significant progress in developing a mid-IR photonics platform in Si, which is highly transparent in the mid-IR, due to the ease of fabrication and CMOS compatibility provided by the Si platform. Here, we discuss our group’s recent contributions to the field of silicon-based mid-IR photonics, including photonic crystal cavities in a Si membrane platform and grating-coupled high-quality factor ring resonators in a silicon-on-sapphire (SOS) platform. Since experimental characterization of microphotonic devices is especially challenging at the mid-IR, we also review our mid-IR characterization techniques in some detail. Additionally, pre- and post-processing techniques for improving device performance, such as resist reflow, Piranha clean/HF dip cycling, and annealing are discussed.


2018 ◽  
Vol 5 (10) ◽  
pp. 20904-20911
Author(s):  
Sachin S Bharadwaj ◽  
B.W. Shivaraj ◽  
H.N. Narasimha Murthy ◽  
M Krishna ◽  
Manjush Ganiger ◽  
...  

1999 ◽  
Author(s):  
Yongxiang Li ◽  
Muralihar K. Ghantasala ◽  
Kosmas Galatsis ◽  
Wojtek Wlodarski

2018 ◽  
Vol 440 ◽  
pp. 320-330 ◽  
Author(s):  
R. Jolly Bose ◽  
Navas Illyasukutty ◽  
K.S. Tan ◽  
R.S. Rawat ◽  
Murukesan Vadakke Matham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document