Improved design of clutch control system of unmanned helicopter

Author(s):  
Jing Gao ◽  
Junfeng Chen ◽  
Yaoming Zhou
2021 ◽  
Vol 16 (4) ◽  
pp. 675-688
Author(s):  
Xinfan Yin ◽  
Xianmin Peng ◽  
Guichuan Zhang ◽  
Binghui Che ◽  
Chang Wang

Due to the limitation of the size and power, micro unmanned aerial vehicle (MUAV) usually has a small load capacity. Aiming at the problems of limited installation space and easy being interfered in flight attitude measurement of the small-scale unmanned helicopter (SUH), a low-cost and lightweight flight control system of the SUH based on ARM Cortex-M4 core microcontroller and Micro-Electro-Mechanical Systems (MEMS) sensors is developed in this paper. On this basis, in order to realize the autonomous flight control of SUH, firstly, the mathematical model of the SUH is given by using the Newton-Euler formulation. Secondly, a cascade flight controller consisting of the attitude controller and the position controller is developed based on linear active disturbance rejection control (LADRC) and proportional-integral-derivative (PID) control. Furthermore, simulations are conducted to validate the performance of the attitude controller and the position controller in MATLAB/SIMULINK simulation environment. Finally, based on the Align T-REX 470L SUH experimental platform, the hovering experiment and the route flight experiment are also carried out to validate the performance of the designed flight control system hardware and the proposed control algorithm. The results show that the flight control system designed in this paper has high reliability and strong anti-interference ability, and the control algorithm can effectively and reliably realize the attitude stabilization control and route control of the SUH, with high control accuracy and small error.


2018 ◽  
Vol 27 (3) ◽  
pp. 882-890 ◽  
Author(s):  
A. E. A. Elbanna ◽  
T. H. M. Soliman ◽  
A. N. Ouda ◽  
E. M. Hamed

2017 ◽  
Vol 0 (41) ◽  
pp. 49
Author(s):  
V. Klimenko ◽  
M. Michalevich ◽  
D. Leontiev ◽  
A. Yarita ◽  
U. Ryabukha

2011 ◽  
Vol 383-390 ◽  
pp. 5997-6002
Author(s):  
Jiao Wen ◽  
Xiao Ming Liu ◽  
Zhong Gan Zhu ◽  
Ming Cai

This paper proposes an improved design of micro-machined tuning fork gyroscope (M-TFG) to better decouple the cross talk between the driving and sensing directions and to increase resolution. By employing dual-folds spring suspension, the drive mode and the sense mode are mechanically decoupled. Through careful layout design of the location of the dual-folds spring suspension and the drive combs, the mechanical coupling effect is further decreased by isolating the unwanted excitation from detection. The peripheral circuit is also the important part to realize the function of the gyro system. Since the analog circuit has some inherent shortcomings, which has limited the accuracy of the gyro. In this paper, a digital control system for micro-comb is introduced.


Author(s):  
Mohammad Hossein Khalesi ◽  
Hassan Salarieh ◽  
Mahmoud Saadat Foumani

In recent years, unmanned aerial systems have attracted great attention due to the electronic systems technology advancements. Among these vehicles, unmanned helicopters are more important because of their special abilities and superior performance. The complex nonlinear dynamic system (caused by main rotor flapping dynamics coupled with the rigid body rotational motion) and considerable effects of ambient disturbance make their utilization hard in actual missions. Attitude dynamics have the main role in helicopter stabilization, so implementing proper control system for attitude is an important issue for unmanned helicopter hovering and trajectory tracking performance. Besides this, experimental utilization of low-cost flight control system for unmanned helicopters is still a challenging task. In this article, dynamic modeling, system identification, and robust control system implementation of roll and pitch dynamics of an unmanned helicopter is performed. A TRex-600E radio-controlled helicopter is equipped with a novel low-cost flight control system designed and constructed based on Raspberry Pi Linux-based microcomputer. Using Raspberry Pi makes this platform simpler to utilize and more time and cost-effective than similar platforms used before. The experiments are performed on a 5-degree-of-freedom testbed. The robust control system is designed based on [Formula: see text] method and is evaluated in real flight tests. The experiment results show that the proposed platform has the ability to successfully control the roll and pitch dynamics of the unmanned helicopter.


2011 ◽  
Vol 44 (1) ◽  
pp. 4797-4802 ◽  
Author(s):  
Kazutaka Adachi ◽  
Hiroyuki Ashizawa ◽  
Sachiyo Nomura ◽  
Yoshimasa Ochi

Sign in / Sign up

Export Citation Format

Share Document