The Feature Related Techniques in Content-Based Image Retrieval and Their Application in Solar Image Data

Author(s):  
Donghui Sun ◽  
Hui Deng ◽  
Feng Wang ◽  
Kaifan Ji ◽  
Wei Dai ◽  
...  
Author(s):  
Noureddine Abbadeni

This chapter describes an approach based on human perception to content-based image representation and retrieval. We consider textured images and propose to model the textural content of images by a set of features having a perceptual meaning and their application to content-based image retrieval. We present a new method to estimate a set of perceptual textural features, namely coarseness, directionality, contrast and busyness. The proposed computational measures are based on two representations: the original images representation and the autocovariance function (associated with images) representation. The correspondence of the proposed computational measures to human judgments is shown using a psychometric method based on the Spearman rank-correlation coefficient. The set of computational measures is applied to content-based image retrieval on a large image data set, the well-known Brodatz database. Experimental results show a strong correlation between the proposed computational textural measures and human perceptual judgments. The benchmarking of retrieval performance, done using the recall measure, shows interesting results. Furthermore, results merging/fusion returned by each of the two representations is shown to allow significant improvement in retrieval effectiveness.


Author(s):  
Jane You ◽  
Qin Li ◽  
Jinghua Wang

This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing. It also provides an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features. Experimental results confirm that the new approach is feasible for content-based image retrieval.


Author(s):  
Colin C. Venters ◽  
Richard J. Hartley ◽  
William T. Hewitt

The proliferation in volume of digital image data has exacerbated the general image retrieval problem, creating a need for efficient storage and flexible retrieval of vast amounts of image data (Chang, 1989). Whilst there have been significant technological advances with image data capture and storage, developments in effective image retrieval have not kept pace. Research in image retrieval has been divided into two areas: concept-based image retrieval and content-based image retrieval. The former focuses on the use of classification schemes or indexing terms to retrieve images while the latter focuses on the visual features of the image, such as colour, shape, texture, and spatial relationships.


2019 ◽  
Vol 8 (3) ◽  
pp. 8881-8884

These are the days where we are very rich in information and poor in data. This is very true in case of image data. Whether it is the case of normal images or satellite images, the image collection is very huge but utilizing those images is of least concern. Extracting features from big images is a very challenging and compute intensive task but if we realize it, it will be very fruitful. CBIR (Content Based Image Retrieval) when used with HRRS (High Resolution Remote Sensing) images will yield with effective data.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 63
Author(s):  
K Deepa ◽  
K Priyanka

The process of demonstrating, organizing and evaluating the pictures regarding the information despite of evaluating pictures is the field of Content Based Image Retrieval (CBIR). Here we work on the salvage of images based not on keywords or explanations but on features haul out directly from the image data. The well-organized algorithms of salvage algorithms are already proposed. Content Based Image Retrieval has replaced Text Based Image Retrieval. CBIR is processed by more methods and research scientists are working to improve the accuracy of the technique. The project presents that the ROI from an image is retrieved and it retains the image based on Teacher Learning Based Optimization genetic algorithm. The retrieval of the image improves the efficiency based on two metrics such as precision and recall which is the main advantage of the project. The issue of Content Based Image Retrieval systems to provide the semantic gap and to determine the variation between the structure of visual objects and definition of semantics. From the human visual system the visual courtesy is more projected for the purpose of Content Based Image Retrieval. The new similarity based matching method is described based on the saliency map which retains the courtesy values and the regions of interest are hauled out. 


Author(s):  
Rose Bindu Joseph P. ◽  
Ezhilmaran Devarasan

Content-based image retrieval aims to acquire images from huge databases by analyzing their visual features like color, texture, shape, and spatial relationship. The search for superior accuracy in image retrieval has resulted in concentrating more on semantic gap reduction between the low-level features and high level human reasoning. Fuzzy theory is a prevailing methodology which helps in attaining this goal by using attributes and interpretations similar to human reasoning. The vagueness and impreciseness in image data and the retrieval process can be modeled by fuzzy sets. This chapter analyses fuzzy theoretic approaches in various stages of content-based image retrieval system. Various fuzzy-based feature descriptors are discussed along with different fuzzy classification and indexing algorithms for content-based image retrieval. This chapter also presents an overview of various fuzzy distance and similarity measures for image retrieval. A novel fuzzy theoretic retrieval for finger vein biometric images is also proposed in this chapter with experiment and analysis.


Author(s):  
Vinayak Majhi ◽  
Sudip Paul

Content-based image retrieval is a promising technique to access visual data. With the huge development of computer storage, networking, and the transmission technology now it becomes possible to retrieve the image data beside the text. In the traditional way, we find the content of image by the tagged image with some indexed text. With the development of machine learning technique in the domain of artificial intelligence, the feature extraction techniques become easier for CBIR. The medical images are continuously increasing day by day where each image holds some specific and unique information about some specific disease. The objectives of using CBIR in medical diagnosis are to provide correct and effective information to the specialist for the quality and efficient diagnosis of the disease. Medical image content requires different types of CBIR technique for different medical image acquisition techniques such as MRI, CT, PET Scan, USG, MRS, etc. So, in this concern, each CBIR technique has its unique feature extraction algorithm for each acquisition technique.


Author(s):  
Pushpendra Singh ◽  
P.N. Hrisheekesha ◽  
Vinai Kumar Singh

Background: Finding region of interest in an image and content-based image analysis has been a challenging task for last two decades. With the advancement in image processing, computer vision field and huge amount of image data generation, to manage this huge amount of data Content-Based Image Retrieval System (CBIR) has attracted several researchers as a common technique to manage this huge amount of data. It is an approach of searching user interest, based on visual information present in an image. The requirement of high computation power and huge memory limits deployment of CBIR technique in real-time scenarios. Objective: In this paper an advanced deep learning model is applied for CBIR on facial image data. We design a deep convolution neural network architecture where activation of convolution layer is used for feature representation and include max pooling as feature reduction technique. Furthermore, our model uses partial feature mapping as image descriptor to incorporate the property that facial image contains repeated information. Method: Existing CBIR approaches primarily consider colour, texture and low-level features for mapping and localizing image segments. While deep learning has shown high performance in numerous fields of research, its application in CBIR is still very limited. Human face contains significant information to be used in a content driven task and applicable to various applications of computer vision and multimedia systems. In this research work, a deep learning-based model has been discussed for content-based image retrieval (CBIR). In CBIR, there are two important things 1) classification and 2) retrieval of image based on similarity. For the classification purpose a four-convolution layer model has been proposed. For the calculation of the similarity Euclidian distance measure has been used between the images. Results: Proposed model is completely unsupervised, and it is fast and accurate in comparison to other deep learning models applied for CBIR over facial dataset. The proposed method provided satisfactory results from the experiment. It outperforms other CNN-based models and other unsupervised techniques used for CBIR. The proposed method provided satisfactory results from the experiment and it outperforms other CNN-based models such as VGG16, Inception V3, ResNet50 and MobileNet. Moreover, the performance of proposed model has been compared with pre-trained models in terms of accuracy, storage space and inference time.


Image mining is a technique which handles the mining of information, image data association, or additional patterns not unambiguously stored in the images. It exploits methods from computer vision, image retrieval, image processing, data mining, machine learning, database, and artificial intelligence. In the proposed work, we have developed a new system that can retrieve the images from a dataset on the basis of contents of the query image. Here, ‘Content-Based’ means that the search will analyze the actual contents of the image. The existing system does not evaluate the results upon attacks but in proposed system the results are also being evaluated on adding noise to the images and blurring the images. The overall average accuracy of the proposed system is 96% whereas that of existing system is 85%. Performance of the existing systems is checked on the maximum of 1000 images whereas the performance of the proposed system is checked on more than 5000 images.


Sign in / Sign up

Export Citation Format

Share Document