Blind Natural Image Quality Prediction Using Convolutional Neural Networks And Weighted Spatial Pooling

Author(s):  
Yicheng Su ◽  
Jari Korhonen
Author(s):  
Sebastian Nowak ◽  
Narine Mesropyan ◽  
Anton Faron ◽  
Wolfgang Block ◽  
Martin Reuter ◽  
...  

Abstract Objectives To investigate the diagnostic performance of deep transfer learning (DTL) to detect liver cirrhosis from clinical MRI. Methods The dataset for this retrospective analysis consisted of 713 (343 female) patients who underwent liver MRI between 2017 and 2019. In total, 553 of these subjects had a confirmed diagnosis of liver cirrhosis, while the remainder had no history of liver disease. T2-weighted MRI slices at the level of the caudate lobe were manually exported for DTL analysis. Data were randomly split into training, validation, and test sets (70%/15%/15%). A ResNet50 convolutional neural network (CNN) pre-trained on the ImageNet archive was used for cirrhosis detection with and without upstream liver segmentation. Classification performance for detection of liver cirrhosis was compared to two radiologists with different levels of experience (4th-year resident, board-certified radiologist). Segmentation was performed using a U-Net architecture built on a pre-trained ResNet34 encoder. Differences in classification accuracy were assessed by the χ2-test. Results Dice coefficients for automatic segmentation were above 0.98 for both validation and test data. The classification accuracy of liver cirrhosis on validation (vACC) and test (tACC) data for the DTL pipeline with upstream liver segmentation (vACC = 0.99, tACC = 0.96) was significantly higher compared to the resident (vACC = 0.88, p < 0.01; tACC = 0.91, p = 0.01) and to the board-certified radiologist (vACC = 0.96, p < 0.01; tACC = 0.90, p < 0.01). Conclusion This proof-of-principle study demonstrates the potential of DTL for detecting cirrhosis based on standard T2-weighted MRI. The presented method for image-based diagnosis of liver cirrhosis demonstrated expert-level classification accuracy. Key Points • A pipeline consisting of two convolutional neural networks (CNNs) pre-trained on an extensive natural image database (ImageNet archive) enables detection of liver cirrhosis on standard T2-weighted MRI. • High classification accuracy can be achieved even without altering the pre-trained parameters of the convolutional neural networks. • Other abdominal structures apart from the liver were relevant for detection when the network was trained on unsegmented images.


2020 ◽  
Vol 10 (2) ◽  
pp. 391-400 ◽  
Author(s):  
Ying Chen ◽  
Xiaomin Qin ◽  
Jingyu Xiong ◽  
Shugong Xu ◽  
Jun Shi ◽  
...  

This study aimed to propose a deep transfer learning framework for histopathological image analysis by using convolutional neural networks (CNNs) with visualization schemes, and to evaluate its usage for automated and interpretable diagnosis of cervical cancer. First, in order to examine the potential of the transfer learning for classifying cervix histopathological images, we pre-trained three state-of-the-art CNN architectures on large-size natural image datasets and then fine-tuned them on small-size histopathological datasets. Second, we investigated the impact of three learning strategies on classification accuracy. Third, we visualized both the multiple-layer convolutional kernels of CNNs and the regions of interest so as to increase the clinical interpretability of the networks. Our method was evaluated on a database of 4993 cervical histological images (2503 benign and 2490 malignant). The experimental results demonstrated that our method achieved 95.88% sensitivity, 98.93% specificity, 97.42% accuracy, 94.81% Youden's index and 99.71% area under the receiver operating characteristic curve. Our method can reduce the cognitive burden on pathologists for cervical disease classification and improve their diagnostic efficiency and accuracy. It may be potentially used in clinical routine for histopathological diagnosis of cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document