Application of mathematical model in wastewater treatment optimal control

Author(s):  
Yuxian Hu ◽  
Weiyao Zhu ◽  
Yabing Guo ◽  
Bing Chen
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
M. Teresa T. Monteiro ◽  
Isabel Espírito Santo ◽  
Helena Sofia Rodrigues

<p style='text-indent:20px;'>This paper aims to present a mathematical model that describes the operation of an activated sludge system during one day. Such system is used in the majority of wastewater treatment plants and depends strongly on the dissolved oxygen, since it is a biological treatment. To guarantee the appropriate amount of dissolved oxygen, expensive aeration strategies are demanded, leading to high costs in terms of energy consumption. It was considered a typical domestic effluent as the wastewater to test the mathematical model and it was used the ASM1 to describe the activated sludge behaviour. An optimal control problem was formulated whose cost functional considers the trade-off between the minimization of the control variable herein considered (the dissolved oxygen) and the quality index that is the amount of pollution. The optimal control problem is treated as a nonlinear optimization problem after discretization by direct methods. The problem was then coded in the AMPL programming language in order to carry out numerical simulations using the NLP solver IPOPT from NEOS Server.</p>


2021 ◽  
Vol 145 ◽  
pp. 110789
Author(s):  
Parthasakha Das ◽  
Samhita Das ◽  
Pritha Das ◽  
Fathalla A. Rihan ◽  
Muhammet Uzuntarla ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
N. H. Sweilam ◽  
S. M. Al-Mekhlafi ◽  
A. O. Albalawi ◽  
D. Baleanu

Abstract In this paper, a novel coronavirus (2019-nCov) mathematical model with modified parameters is presented. This model consists of six nonlinear fractional order differential equations. Optimal control of the suggested model is the main objective of this work. Two control variables are presented in this model to minimize the population number of infected and asymptotically infected people. Necessary optimality conditions are derived. The Grünwald–Letnikov nonstandard weighted average finite difference method is constructed for simulating the proposed optimal control system. The stability of the proposed method is proved. In order to validate the theoretical results, numerical simulations and comparative studies are given.


2021 ◽  
Vol 5 (4) ◽  
pp. 261
Author(s):  
Silvério Rosa ◽  
Delfim F. M. Torres

A Caputo-type fractional-order mathematical model for “metapopulation cholera transmission” was recently proposed in [Chaos Solitons Fractals 117 (2018), 37–49]. A sensitivity analysis of that model is done here to show the accuracy relevance of parameter estimation. Then, a fractional optimal control (FOC) problem is formulated and numerically solved. A cost-effectiveness analysis is performed to assess the relevance of studied control measures. Moreover, such analysis allows us to assess the cost and effectiveness of the control measures during intervention. We conclude that the FOC system is more effective only in part of the time interval. For this reason, we propose a system where the derivative order varies along the time interval, being fractional or classical when more advantageous. Such variable-order fractional model, that we call a FractInt system, shows to be the most effective in the control of the disease.


Author(s):  
Elizaveta Shmalko ◽  
Yuri Rumyantsev ◽  
Ruslan Baynazarov ◽  
Konstantin Yamshanov

To calculate the optimal control, a satisfactory mathematical model of the control object is required. Further, when implementing the calculated controls on a real object, the same model can be used in robot navigation to predict its position and correct sensor data, therefore, it is important that the model adequately reflects the dynamics of the object. Model derivation is often time-consuming and sometimes even impossible using traditional methods. In view of the increasing diversity and extremely complex nature of control objects, including the variety of modern robotic systems, the identification problem is becoming increasingly important, which allows you to build a mathematical model of the control object, having input and output data about the system. The identification of a nonlinear system is of particular interest, since most real systems have nonlinear dynamics. And if earlier the identification of the system model consisted in the selection of the optimal parameters for the selected structure, then the emergence of modern machine learning methods opens up broader prospects and allows you to automate the identification process itself. In this paper, a wheeled robot with a differential drive in the Gazebo simulation environment, which is currently the most popular software package for the development and simulation of robotic systems, is considered as a control object. The mathematical model of the robot is unknown in advance. The main problem is that the existing mathematical models do not correspond to the real dynamics of the robot in the simulator. The paper considers the solution to the problem of identifying a mathematical model of a control object using machine learning technique of the neural networks. A new mixed approach is proposed. It is based on the use of well-known simple models of the object and identification of unaccounted dynamic properties of the object using a neural network based on a training sample. To generate training data, a software package was written that automates the collection process using two ROS nodes. To train the neural network, the PyTorch framework was used and an open source software package was created. Further, the identified object model is used to calculate the optimal control. The results of the computational experiment demonstrate the adequacy and performance of the resulting model. The presented approach based on a combination of a well-known mathematical model and an additional identified neural network model allows using the advantages of the accumulated physical apparatus and increasing its efficiency and accuracy through the use of modern machine learning tools.


2016 ◽  
Vol 21 (6) ◽  
pp. 1895-1915 ◽  
Author(s):  
Clara Rojas ◽  
Juan Belmonte-Beitia ◽  
Víctor M. Pérez-García ◽  
Helmut Maurer

Author(s):  
V.P. Ivanov

The article deals with the problem of synthesis of terminal control. A functional, a nonlinear mathematical model of a dynamic object, restrictions on the maximum permissible values of control are given. The control law is synthesized. The following statement is proved: the synthesis of the optimal control is carried out using the entire initial mathematical model of the dynamical object, but to calculate the control at any particular moment of time, it is possible to use a reduced (truncated) model, which simplifies the computational algorithms. Thus, there is an informational dualism of the manage- ment task. The approach is an extension of the principle of information redefinition of Yu.B. Germeier to the area of optimal terminal control.


Sign in / Sign up

Export Citation Format

Share Document