Fault tolerant mechanism in grid based on Backup Node

Author(s):  
Shahram Babaie ◽  
M. Javad Heydari
2001 ◽  
Vol 24 (15-16) ◽  
pp. 1589-1606 ◽  
Author(s):  
H.S. Laskaridis ◽  
A.A. Veglis ◽  
G.I. Papadimitriou ◽  
A.S. Pombortsis

2022 ◽  
Vol 12 (2) ◽  
pp. 544
Author(s):  
Hakim Abdulrab ◽  
Fawnizu Azmadi Hussin ◽  
Azrina Abd Aziz ◽  
Azlan Awang ◽  
Idris Ismail ◽  
...  

Communication in industrial wireless networks necessitates reliability and precision. Besides, the existence of interference or traffic in the network must not affect the estimated network properties. Therefore, data packets have to be sent within a certain time frame and over a reliable connection. However, the working scenarios and the characteristics of the network itself make it vulnerable to node or link faults, which impact the transmission reliability and overall performance. This article aims to introduce a developed multipath routing model, which leads to cost-effective planning, low latency and high reliability of industrial wireless mesh networks, such as the WirelessHART networks. The multipath routing model has three primary paths, and each path has a backup node. The backup node stores the data transmitted by the parent node to grant communication continuity when primary nodes fail. The multipath routing model is developed based on optimal network planning and deployment algorithm. Simulations were conducted on a WirelessHART simulator using Network Simulator (NS2). The performance of the developed model is compared with the state-of-the-art. The obtained results reveal a significant reduction in the average network latency, low power consumption, better improvement in expected network lifetime, and enhanced packet delivery ratio which improve network reliability.


Author(s):  
Yenming J. Chen

Several healthcare disasters have occurred in the past decade, and their occurrence has become more frequent recently due to one natural catastrophe after another. The medical application requirement for such a disaster management system includes effective, reliable, and coordinated responses to disease and injury, accurate surveillance of area hospitals, and efficient management of clinical and research information. Based on the application requirements, this case study describes a grid-based system in a health information supply chain that monitors and detects national infectious events using geographical information system (GIS), radio-frequency identification (RFID), and grid computing technology. This system is fault-tolerant, highly secure, flexible, and extensible, thus making it capable of operation in case of a national catastrophe. It has a low cost of deployment and is designed for large-scale and quick responses. Owing to the grid-based nature of the network, no central server or data centre needs to be built. To reinforce the responsiveness of the national health information supply chain, this case study proposes a practical, tracking-based, spatially-aware, steady, and flexible architecture, based on GIS and RFID, for developing successful infectious disaster management plans to tackle technical issues. The architecture achieves a common understanding of spatial data and processes. Therefore, the system can efficiently and effectively share, compare, and federate—yet integrate—most local health information providers and results in more informed planning and better outcome.


Author(s):  
Yenming J. Chen

Several healthcare disasters have occurred in the past decade, and their occurrence has become more frequent recently due to one natural catastrophe after another. The medical application requirement for such a disaster management system includes effective, reliable, and coordinated responses to disease and injury, accurate surveillance of area hospitals, and efficient management of clinical and research information. Based on the application requirements, this case study describes a grid-based system in a health information supply chain that monitors and detects national infectious events using geographical information system (GIS), radio-frequency identification (RFID), and grid computing technology. This system is fault-tolerant, highly secure, flexible, and extensible, thus making it capable of operation in case of a national catastrophe. It has a low cost of deployment and is designed for large-scale and quick responses. Owing to the grid-based nature of the network, no central server or data centre needs to be built. To reinforce the responsiveness of the national health information supply chain, this case study proposes a practical, tracking-based, spatially-aware, steady, and flexible architecture, based on GIS and RFID, for developing successful infectious disaster management plans to tackle technical issues. The architecture achieves a common understanding of spatial data and processes. Therefore, the system can efficiently and effectively share, compare, and federate—yet integrate—most local health information providers and results in more informed planning and better outcome.


2013 ◽  
Vol 18 ◽  
pp. 130-139 ◽  
Author(s):  
J.W. Larson ◽  
M. Hegland ◽  
B. Harding ◽  
S. Roberts ◽  
L. Stals ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document