scholarly journals Reliable Fault Tolerant-Based Multipath Routing Model for Industrial Wireless Control Systems

2022 ◽  
Vol 12 (2) ◽  
pp. 544
Author(s):  
Hakim Abdulrab ◽  
Fawnizu Azmadi Hussin ◽  
Azrina Abd Aziz ◽  
Azlan Awang ◽  
Idris Ismail ◽  
...  

Communication in industrial wireless networks necessitates reliability and precision. Besides, the existence of interference or traffic in the network must not affect the estimated network properties. Therefore, data packets have to be sent within a certain time frame and over a reliable connection. However, the working scenarios and the characteristics of the network itself make it vulnerable to node or link faults, which impact the transmission reliability and overall performance. This article aims to introduce a developed multipath routing model, which leads to cost-effective planning, low latency and high reliability of industrial wireless mesh networks, such as the WirelessHART networks. The multipath routing model has three primary paths, and each path has a backup node. The backup node stores the data transmitted by the parent node to grant communication continuity when primary nodes fail. The multipath routing model is developed based on optimal network planning and deployment algorithm. Simulations were conducted on a WirelessHART simulator using Network Simulator (NS2). The performance of the developed model is compared with the state-of-the-art. The obtained results reveal a significant reduction in the average network latency, low power consumption, better improvement in expected network lifetime, and enhanced packet delivery ratio which improve network reliability.

Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 169 ◽  
Author(s):  
Na Wu ◽  
Decheng Zuo ◽  
Zhan Zhang

Improving reliability is one of the major concerns of scientific workflow scheduling in clouds. The ever-growing computational complexity and data size of workflows present challenges to fault-tolerant workflow scheduling. Therefore, it is essential to design a cost-effective fault-tolerant scheduling approach for large-scale workflows. In this paper, we propose a dynamic fault-tolerant workflow scheduling (DFTWS) approach with hybrid spatial and temporal re-execution schemes. First, DFTWS calculates the time attributes of tasks and identifies the critical path of workflow in advance. Then, DFTWS assigns appropriate virtual machine (VM) for each task according to the task urgency and budget quota in the phase of initial resource allocation. Finally, DFTWS performs online scheduling, which makes real-time fault-tolerant decisions based on failure type and task criticality throughout workflow execution. The proposed algorithm is evaluated on real-world workflows. Furthermore, the factors that affect the performance of DFTWS are analyzed. The experimental results demonstrate that DFTWS achieves a trade-off between high reliability and low cost objectives in cloud computing environments.


2019 ◽  
Vol 27 (6) ◽  
pp. 2354-2362 ◽  
Author(s):  
Qian Chen ◽  
Xiao Juan Zhang ◽  
Wei Lih Lim ◽  
Yuen Sam Kwok ◽  
Sumei Sun

2013 ◽  
Vol 760-762 ◽  
pp. 623-627
Author(s):  
Yu Huai Peng ◽  
Yin Peng Yu ◽  
Cun Qian Yu ◽  
Qing Yang Song ◽  
Fei Wang

This paper addresses the fault-tolerant mechanisms in Wireless mesh networks (WMNs), and designs a C++ based simulation platform to measure the performance of different fault-tolerant mechanisms. A comprehensive performance evaluation of network coding tree algorithm (NCT), 1+1 scheme and 1: N scheme in WMNs is conducted. Performance metrics, such as packet delivery ratio, resource redundancy degree, end-to-end delay, and useful throughput ratio, are investigated. The simulation results and performance analysis reveal that how wireless channel quality can influence the performance of WMNs and how different fault-tolerant mechanisms can be efficient and effective for latency-sensitive applications in WMNs. The results can also provide the enlightening insights for efficient design of fault-tolerant routing protocols for many-to-one traffic pattern in WMNs.


2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Shaker Alanazi ◽  
Kashif Saleem ◽  
Jalal Al-Muhtadi ◽  
Abdelouahid Derhab

Wireless mesh networks (WMNs) are a promising technology that has emerged with the combination of several wireless networks. These wireless networks and devices communicate in a mesh network manner, to provide edge-to-edge, easy, and cost-effective data communication. Many current and future promising applications depend on WMN and one of the most important applications is eHealthcare, where the confidential information transfers with the help of WMN. WMN devices communicate over a wireless medium, which opens the system to a number of vulnerabilities; thus, an intruder can launch malicious activities through many types of attacks that can result in denial of service (DoS). In this paper, the available solutions to overcome these attacks are simulated and evaluated in terms of data packet delivery ratio, end-to-end delay, and network throughput and under different cases of static and mobile WMNs, which helps in providing suggestions to enhance existing protocols and mitigate the effect of DoS caused by such attacks.


2016 ◽  
Vol 27 (07) ◽  
pp. 1650080 ◽  
Author(s):  
Yang Yu ◽  
Mangui Liang ◽  
Zhiyu Liu

In mobile ad hoc networks (MANETs), link failures are caused frequently because of node’s mobility and use of unreliable wireless channels for data transmission. Multipath routing strategy can cope with the problem of the traffic overloads while balancing the network resource consumption. In the paper, an optimized node-disjoint multipath routing (ONMR) protocol based on ad hoc on-demand vector (AODV) is proposed to establish effective multipath to enhance the network reliability and robustness. The scheme combines the characteristics of reverse AODV (R-AODV) strategy and on-demand node-disjoint multipath routing protocol to determine available node-disjoint routes with minimum routing control overhead. Meanwhile, it adds the backup routing strategy to make the process of data salvation more efficient in case of link failure. The results obtained through various simulations show the effectiveness of the proposed scheme in terms of route availability, control overhead and packet delivery ratio.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
J. L. Palmer ◽  
H. J. Siddle ◽  
A. C. Redmond ◽  
B. Alcacer-Pitarch

Abstract Background Foot health problems are common in the general population, and particularly so in people with rheumatic and musculoskeletal disorders (RMD). Several clinical guidelines state that people with RMDs should have access to foot health services, although service capacity is often limited. The current COVID-19 pandemic has increased the need for alternative ways to provide patient care. The aim of this clinical audit was to review a newly implemented telephone follow-up appointment service conducted within the Rheumatology Podiatry Department in Leeds, UK. Methods Fifty-eight patients attending the Rheumatology Podiatry Department at Leeds Teaching Hospitals NHS Trust were contacted by telephone approximately 6–8 weeks following initial intervention. During the telephone consultation, all patients were asked pre-defined questions relating to their symptoms, intervention efficacy, the need for further appointments and their preference for the type of consultation. To assess the cost of the telephone consultation the number of attempts needed in order to make successful contact, the duration of the call and the number of telephone follow-up appointments completed in a working day were also recorded. Results Twenty-five patients (43%) were successfully contacted within the 6–8 weeks stipulated time frame and were included in the analysis. Of the 25 contacted, twelve (48%) patients were successfully contacted on the first attempt. Ten (40%) were successfully contacted on the second attempt. The remaining three patients (12%) required 3 or more attempts to make successful contact. Telephone consultations were estimated not to last longer than 10 min, including notes screening and documentation. Eleven patients (44%) reported an improvement in their symptoms, thirteen (52%) reported no change and one patient (4%) reported their symptoms to be worse. Conclusion Telephone follow-up consultations may be a potentially cost-effective alternative to face-to-face appointments when implemented in a Rheumatology Podiatry Department, and provide an alternative way of providing care, especially when capacity for face-to-face contact is limited. The potential cost saving and efficiency benefits of this service are likely to be enhanced when telephone consultations are pre-arranged with patients.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 125
Author(s):  
Kai Huang ◽  
Xinming Wan ◽  
Ke Wang ◽  
Xiaowen Jiang ◽  
Junjian Chen ◽  
...  

With the development of industrial networks, the demands for strict timing requirements and high reliability in transmission become more essential, which promote the establishment of a Time-Sensitive Network (TSN). TSN is a set of standards with the intention of extending Ethernet for safety-critical and real-time applications. In general, frame replication is used to achieve fault-tolerance, while the increased load has a negative effect on the schedule synthesis phase. It is necessary to consider schedulability and reliability jointly. In this paper, a heuristic-based routing method is proposed to achieve fault tolerance by spatial redundancy for TSNs containing unreliable links. A cost function is presented to evaluate each routing set, and a heuristic algorithm is applied to find the solution with higher schedulability. Compared to the shortest path routing, our method can improve the reliability and the success rate of no-wait scheduling by 5–15% depending on the scale of topology.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 565
Author(s):  
P. Bakeyalakshmi ◽  
S. K. Mahendran

Nowadays, detection scheme of intrusion is placing a major role for efficient access and analysis in Mobile Ad-hoc network (MANET). In the past, the detection scheme of Intrusion was used to identify the efficiency of the network and in maximum systems it performs with huge rate of false alarm. In this paper, an Effective approach of the Enhanced Replica Detection scheme (ERDS) based on Sequential Probability Ratio Test (SPRT) is proposed to detect the malicious actions and to have a secure path without claim in an efficient manner. Also, provides strategies to avoid attacker and to provide secure communication. In order to have an efficient analysis of intrusion detection the proposed approach is implemented based on the anomaly. To achieve this, the detection scheme is established based on SPRT and demonstrated the performances of detection with less claim. The simulation results of control overhead, packet delivery ratio, efficient detection, energy consumption and average claims are carried out for the analysis of performance to show the improvement than the existing by using the network simulator tool. Also, the performance of the proposed system illustrated the detection of intrusion in the normal and attacker states of the network.


Sign in / Sign up

Export Citation Format

Share Document