Linear adaptive control in the cantilever construction of long-span PC continuous beam bridge

Author(s):  
Wang Qin ◽  
He Yabo
2010 ◽  
Vol 121-122 ◽  
pp. 162-167
Author(s):  
Hu Cheng ◽  
Guo Xuan

During the construction of a bridge, the construction procedures may change from the originally designed procedures due to some reasons like the weather. In this paper, the influence of construction procedures on the liner and stress is investigated for a prestressed continuous beam bridge with three spans. Finite element analysis indicated that construction procedures have great impact on the liner control and they affect the middle span and side span differently. Although different sets of construction procedures cause different stress at corresponding construction stages after the cantilever construction is finished, they have no significant influence on the stress of the finally built bridge. Test data agreed with finite element analysis. It is thus the influence of construction procedures on bridge liner control should not be neglected.


2021 ◽  
Vol 276 ◽  
pp. 02030
Author(s):  
Wang Yanan ◽  
Tang Guangwu ◽  
Liu Haiming ◽  
Wang Fujie ◽  
Chen yuan

In order to study the influence of far-field long-period seismic waves on high-pier and long-span continuous beam bridge, taking a high-pier and long-span continuous beam bridge with span arrangement of (95+170+95) m as an example, a numerical analysis model is established based on finite element software. According to the established wave selection criterion, 10 far-field long-period seismic records and 10 ordinary seismic records are selected from the strong earthquake record database. Using nonlinear time history analysis method, the difference of seismic response of long-span continuous beam bridge with isolated high piers under the action of ordinary ground motion and far-field long-period ground motion is studied. The results show that compared with the ordinary ground motion, the seismic response of long-span continuous beam bridge with isolated high piers is obviously increased under the action of long-period ground motion in the far field. When building isolated long-span bridges in areas with great influence of long-period ground motion in the far field, attention should be paid to the adverse effects caused by the frequency spectrum characteristics of ground motion.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Man Liao ◽  
Bin Wu ◽  
Xianzhi Zeng ◽  
Kailai Deng

AbstractIn the seismic design of long-span bridges, the classic bi-linear model was used to simulate the frictional restoring force of the rubber bearings. However, in actual earthquake, the rubber bearing suffered fluctuating axial pressure in earthquake, even separated from the beam when vertical component of the earthquake was too strong. Employing the bi-linear model for the bearing may incorrectly estimate the seismic response of the bearings, as well as the whole bridge. This paper developed a nonlinear frictional bearing model, which can consider the variation of the frictional restoring force in the bearings, even the separation with the beam in vertical directions. A typical continuous beam bridge was modeled in ABAQUS, and incremental dynamic analysis was conducted for the quantitative comparison of the seismic responses using different bearing models. The intensity measure was selected as the ratio of the peak ground acceleration (PGA) in the vertical direction to the PGA in the horizontal direction. The analysis results indicated that the different bearing model led to the significant different seismic response for the bearings and piers, even the vertical component was small. The bi-linear bearing model would underestimate the seismic demand of the bearing and piers.


2011 ◽  
Vol 105-107 ◽  
pp. 994-998
Author(s):  
Ya Bo He ◽  
Qin Wang

The construction control is very important to the construction quality of long-pan continuous beam bridge, so a self-adaptive construction control analysis method is proposed. A construction self-adaptive control system is established in this paper, which is based on the self-adaptive control theory and the characteristic of long-pan continuous beam bridge construction. The sensitivity analysis method is used to choose the most important parameters. The least squares method is utilized to parameter identification. The construction forecast control is also included in the construction self-adaptive control system. The analysis result of a beam bridge shows that the self-adaptive construction control analysis method is feasible and reasonable.


2014 ◽  
Vol 919-921 ◽  
pp. 308-312
Author(s):  
Cong Qi Li ◽  
Wen Jie Ge ◽  
Da Fu Cao ◽  
Bi Yuan Wang

The creep of concrete structure has a prodigious effect on bridge alignments and the stress control during the bridge construction. In the meantime, the problems such as pre-stress losses, bearing asymmetry sink ,the concrete box-beam deflection, box-beam web cracks, structure stress redistributing and so on, which make the bridge structure lose functions or even invalid early when it works. For these reasons, the construction monitor of the deformation and the long-term deflection of long-span bridges with high piers have important practical significance. Construction monitoring of prestressed concrete continuous beam bridge - new Tongyang canal bridge which adopt cantilever construction work is made.


2018 ◽  
Vol 8 (5) ◽  
pp. 669 ◽  
Author(s):  
Hongye Gou ◽  
Wen Zhou ◽  
Yi Bao ◽  
Xiaobin Li ◽  
Qianhui Pu

Sign in / Sign up

Export Citation Format

Share Document