scholarly journals Application research of seismic isolation device in long-span continuous beam bridge

Author(s):  
Fang Chen ◽  
Tieyi Zhong ◽  
Wei Wang ◽  
Xiaoxue Wang ◽  
Fan Zhu
2011 ◽  
Vol 194-196 ◽  
pp. 2008-2013
Author(s):  
Bin Yan

Continuous beam bridge was widely used, while seismic problem of it was prominent in meizoseismal area. According to seismic-isolation principle and mechanism of PSD, seismic performance of PSD were studied and the parameters of PSD were analyzed later, based on south approach of North Branch of Xia-Zhang Sea-Crossing Bridge. It was found that PSD, a combination of preloaded spring and liquid viscous damper, was an effective seismic-isolation device which could significantly reduce the seismic response of continuous beam bridge in longitudinal and transverse direction. Damper coefficient was the main parameter of PSD, while preloaded force, linear spring stiffness and damper index had a little effect on seismic performance of PSD.


2011 ◽  
Vol 255-260 ◽  
pp. 2488-2491
Author(s):  
Bin Yan ◽  
Peng Liu

Continuous Beam Bridge was widely used, while seismic problem of it was prominent in meizoseismal area. According to mechanism of DSB, seismic performance of DSB was studied and the parameters of DSB were analyzed later, based on non-navigable bridge of Hong Kong-Zhuhai-Macau Bridge in deep water. It was found that DSB was an effective seismic-isolation device which could significantly reduce the seismic force although seismic displacement of bridge was increased. Yielding force and post-yielding stiffness were two main parameters of DSB.


2021 ◽  
Vol 276 ◽  
pp. 02030
Author(s):  
Wang Yanan ◽  
Tang Guangwu ◽  
Liu Haiming ◽  
Wang Fujie ◽  
Chen yuan

In order to study the influence of far-field long-period seismic waves on high-pier and long-span continuous beam bridge, taking a high-pier and long-span continuous beam bridge with span arrangement of (95+170+95) m as an example, a numerical analysis model is established based on finite element software. According to the established wave selection criterion, 10 far-field long-period seismic records and 10 ordinary seismic records are selected from the strong earthquake record database. Using nonlinear time history analysis method, the difference of seismic response of long-span continuous beam bridge with isolated high piers under the action of ordinary ground motion and far-field long-period ground motion is studied. The results show that compared with the ordinary ground motion, the seismic response of long-span continuous beam bridge with isolated high piers is obviously increased under the action of long-period ground motion in the far field. When building isolated long-span bridges in areas with great influence of long-period ground motion in the far field, attention should be paid to the adverse effects caused by the frequency spectrum characteristics of ground motion.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Man Liao ◽  
Bin Wu ◽  
Xianzhi Zeng ◽  
Kailai Deng

AbstractIn the seismic design of long-span bridges, the classic bi-linear model was used to simulate the frictional restoring force of the rubber bearings. However, in actual earthquake, the rubber bearing suffered fluctuating axial pressure in earthquake, even separated from the beam when vertical component of the earthquake was too strong. Employing the bi-linear model for the bearing may incorrectly estimate the seismic response of the bearings, as well as the whole bridge. This paper developed a nonlinear frictional bearing model, which can consider the variation of the frictional restoring force in the bearings, even the separation with the beam in vertical directions. A typical continuous beam bridge was modeled in ABAQUS, and incremental dynamic analysis was conducted for the quantitative comparison of the seismic responses using different bearing models. The intensity measure was selected as the ratio of the peak ground acceleration (PGA) in the vertical direction to the PGA in the horizontal direction. The analysis results indicated that the different bearing model led to the significant different seismic response for the bearings and piers, even the vertical component was small. The bi-linear bearing model would underestimate the seismic demand of the bearing and piers.


2020 ◽  
Vol 51 (4-5) ◽  
pp. 85-92
Author(s):  
Li Zhen ◽  
Li Dejian ◽  
Peng Leihua ◽  
Lu Yao ◽  
Cheng Kepei ◽  
...  

Bridges are the lifelines of disasters in earthquake areas. Therefore, it is very necessary to ensure the safety and traffic function after earthquake. Seismic isolation refers to install external energy dissipation devices or external energy input devices in specific parts of engineering structures. There are certain differences in longitudinal and transverse seismic responses of multi-span continuous beam bridges by changing the seismic dynamic characteristics or dynamic effects of structures. It is difficult to achieve the purpose of seismic isolation in both horizontal directions using isolation devices alone. The rubber deformation ability of lead rubber bearings can effectively insulate, and the yield energy consumption ability of its lead core can effectively consume the seismic energy for damping. The horizontal resistance is very small under the creep load, and the stiffness decreases rapidly after yielding under the strong dynamic earthquake load; meanwhile, the seismic energy is dissipated by the hysteresis of bearing. Fluid viscous damper is a velocity-dependent energy dissipation device, which produces viscous damping force, provides strong restoring force for components, and has a good limit function. This process will also dissipate the seismic energy, so as to reduce the structural earthquake response. Using these two methods together, the horizontal seismic responses of multi-span continuous beam bridges can be effectively controlled at the same time. Based on this idea, this article takes a high-speed multi-span continuous beam bridge with equal section as the engineering background, and uses dynamic time history analysis method to discuss the seismic isolation effect of lead rubber bearings and fluid viscous dampers.


2018 ◽  
Vol 8 (5) ◽  
pp. 669 ◽  
Author(s):  
Hongye Gou ◽  
Wen Zhou ◽  
Yi Bao ◽  
Xiaobin Li ◽  
Qianhui Pu

Sign in / Sign up

Export Citation Format

Share Document