Parameter estimation via second order sliding modes with application to thermal modelling in a high speed rotating machine

Author(s):  
T. Floquet ◽  
J. A. Twiddle ◽  
S. K. Spurgeon
Author(s):  
U. A. Abasiekwere ◽  
E. Eteng ◽  
I. O. Isaac ◽  
Z. Lipcsey

The oscillations theory of neutral impulsive differential equations is gradually occupying a central place among the theories of oscillations of impulsive differential equations. This could be due to the fact that neutral impulsive differential equations plays fundamental and significant roles in the present drive to further develop information technology. Indeed, neutral differential equations appear in networks containing lossless transmission lines (as in high-speed computers where the lossless transmission lines are used to interconnect switching circuits).   In this paper, we study the behaviour of solutions of a certain class of second-order linear neutral differential equations with impulsive constant jumps.  This type of equation in practice is always known to have an unbounded non-oscillatory solution.  We, therefore, seek sufficient conditions for which all bounded solutions are oscillatory and provide an example to demonstrate the applicability of the abstract result.


2016 ◽  
Vol 46 (4) ◽  
pp. 3-18
Author(s):  
Venelin S. Jivkov ◽  
Evtim V. Zahariev

Abstract The paper presents a geometrical approach to dynamics simulation of a rigid and flexible system, compiled of high speed rotating machine with eccentricity and considerable inertia and mass. The machine is mounted on a vertical flexible pillar with considerable height. The stiffness and damping of the column, as well as, of the rotor bearings and the shaft are taken into account. Non-stationary vibrations and transitional processes are analyzed. The major frequency and modal mode of the flexible column are used for analytical reduction of its mass, stiffness and damping properties. The rotor and the foundation are modelled as rigid bodies, while the flexibility of the bearings is estimated by experiments and the requirements of the manufacturer. The transition effects as a result of limited power are analyzed by asymptotic methods of averaging. Analytical expressions for the amplitudes and unstable vibrations throughout resonance are derived by quasi-static approach increasing and decreasing of the exciting frequency. Analytical functions give the possibility to analyze the influence of the design parameter of many structure applications as wind power generators, gas turbines, turbo-generators, and etc. A numerical procedure is applied to verify the effectiveness and precision of the simulation process. Nonlinear and transitional effects are analyzed and compared to the analytical results. External excitations, as wave propagation and earthquakes, are discussed. Finite elements in relative and absolute coordinates are applied to model the flexible column and the high speed rotating machine. Generalized Newton - Euler dynamics equations are used to derive the precise dynamics equations. Examples of simulation of the system vibrations and nonstationary behaviour are presented.


Sign in / Sign up

Export Citation Format

Share Document