Fast Rule-Based Prediction of Data Streams Using Associative Classification Mining

Author(s):  
K. Prasanna Lakshmi ◽  
C. R. K. Reddy
2021 ◽  
Vol 20 (01) ◽  
pp. 2150013
Author(s):  
Mohammed Abu-Arqoub ◽  
Wael Hadi ◽  
Abdelraouf Ishtaiwi

Associative Classification (AC) classifiers are of substantial interest due to their ability to be utilised for mining vast sets of rules. However, researchers over the decades have shown that a large number of these mined rules are trivial, irrelevant, redundant, and sometimes harmful, as they can cause decision-making bias. Accordingly, in our paper, we address these challenges and propose a new novel AC approach based on the RIPPER algorithm, which we refer to as ACRIPPER. Our new approach combines the strength of the RIPPER algorithm with the classical AC method, in order to achieve: (1) a reduction in the number of rules being mined, especially those rules that are largely insignificant; (2) a high level of integration among the confidence and support of the rules on one hand and the class imbalance level in the prediction phase on the other hand. Our experimental results, using 20 different well-known datasets, reveal that the proposed ACRIPPER significantly outperforms the well-known rule-based algorithms RIPPER and J48. Moreover, ACRIPPER significantly outperforms the current AC-based algorithms CBA, CMAR, ECBA, FACA, and ACPRISM. Finally, ACRIPPER is found to achieve the best average and ranking on the accuracy measure.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhongmei Zhou

A good classifier can correctly predict new data for which the class label is unknown, so it is important to construct a high accuracy classifier. Hence, classification techniques are much useful in ubiquitous computing. Associative classification achieves higher classification accuracy than some traditional rule-based classification approaches. However, the approach also has two major deficiencies. First, it generates a very large number of association classification rules, especially when the minimum support is set to be low. It is difficult to select a high quality rule set for classification. Second, the accuracy of associative classification depends on the setting of the minimum support and the minimum confidence. In comparison with associative classification, some improved traditional rule-based classification approaches often produce a classification rule set that plays an important role in prediction. Thus, some improved traditional rule-based classification approaches not only achieve better efficiency than associative classification but also get higher accuracy. In this paper, we put forward a new classification approach called CMR (classification based on multiple classification rules). CMR combines the advantages of both associative classification and rule-based classification. Our experimental results show that CMR gets higher accuracy than some traditional rule-based classification methods.


2017 ◽  
Vol 265 ◽  
pp. 127-141 ◽  
Author(s):  
Thien Le ◽  
Frederic Stahl ◽  
Mohamed Medhat Gaber ◽  
João Bártolo Gomes ◽  
Giuseppe Di Fatta
Keyword(s):  

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Associative Classification (AC) or Class Association Rule (CAR) mining is a very efficient method for the classification problem. It can build comprehensible classification models in the form of a list of simple IF-THEN classification rules from the available data. In this paper, we present a new, and improved discrete version of the Crow Search Algorithm (CSA) called NDCSA-CAR to mine the Class Association Rules. The goal of this article is to improve the data classification accuracy and the simplicity of classifiers. The authors applied the proposed NDCSA-CAR algorithm on eleven benchmark dataset and compared its result with traditional algorithms and recent well known rule-based classification algorithms. The experimental results show that the proposed algorithm outperformed other rule-based approaches in all evaluated criteria.


Author(s):  
Prasanna Lakshmi Kompalli ◽  
Ramesh Kumar Cherku

Data stream associative classification poses many challenges to the data mining community. In this paper, we address four major challenges posed, namely, infinite length, extraction of knowledge with single scan, processing time, and accuracy. Since data streams are infinite in length, it is impractical to store and use all the historical data for training. Mining such streaming data for knowledge acquisition is a unique opportunity and even a tough task. A streaming algorithm must scan data once and extract knowledge. While mining data streams, processing time, and accuracy have become two important aspects. In this paper, we propose PSTMiner which considers the nature of data streams and provides an efficient classifier for predicting the class label of real data streams. It has greater potential when compared with many existing classification techniques. Additionally, we propose a compact novel tree structure called PSTree (Prefix Streaming Tree) for storing data. Extensive experiments conducted on 24 real datasets from UCI repository and synthetic datasets from MOA (Massive Online Analysis) show that PSTMiner is consistent. Empirical results show that performance of PSTMiner is highly competitive in terms of accuracy and performance time when compared with other approaches under windowed streaming model.


Sign in / Sign up

Export Citation Format

Share Document