Design and Research of Point Absorber Wave Power Converter

Author(s):  
Chunjie Wang ◽  
Lin Qi ◽  
Peng Chen ◽  
Lin Cui ◽  
Yunqi Duan
2013 ◽  
Vol 291-294 ◽  
pp. 1949-1953
Author(s):  
Yu Feng Tian ◽  
Yan Huang

The interactions between waves and the pendulum wave power converter were simulated, considering Navier-Stokes (N-S) equations as governing equations of the fluid, using the k-ε turbulence model and finite element software ADINA. The setting wave-generating boundary method and viscosity damping region method were developed in the numerical wave tank. Nodal velocities were applied on each layer of the inflow boundary in the setting wave-generating boundary method. The viscosity of the fluid in the damping region was obtained artificially in the viscosity damping region method, and the energy in the fluid was decreased by the viscosity in governing equations. The physical model tests were simulated with the fluid-structure interaction (FSI) numerical model. The numerical results were compared with the experimental data, and then the results were discussed. A reference method is advanced to design the pendulum wave power converter. The method to solve the complex FSI problems is explored.


Author(s):  
Hiroaki Nakada ◽  
Hideaki Ohneda ◽  
Shigeo Takahashi ◽  
Masazumi Shikamori ◽  
Tadashige Nakazono

2019 ◽  
Vol 33 (13) ◽  
pp. 1950168 ◽  
Author(s):  
Qianlong Xu ◽  
Ye Li ◽  
Yingkai Xia ◽  
Weixing Chen ◽  
Feng Gao

Fully submerged sphere and cylinder point absorber (PA), wave energy converters (WECs) are analyzed numerically based on linearized potential flow theory. A boundary element method (BEM) (a radiation–diffraction panel program for wave-body interactions) is used for the basic wave-structure interaction analysis. In the present numerical model, the viscous damping is modeled by an equivalent linearized damping which extracts the same amount of wave energy over one cycle as the conventional quadratic damping term. The wave power capture width in each case is predicted. Comparisons are also made between the sphere and cylinder PAs which have identical geometrical scales and submerged depths. The results show that: (i) viscous damping has a greater influence on wave power performance of the cylinder PA than that of the sphere PA; (ii) the increasing wave height reduces wave power performance of PAs; (iii) the cylinder PA has a better wave power performance compared to the sphere PA in larger wave height scenarios, which indicates that fully submerged cylinder PA is a preferable prototype of WEC.


1995 ◽  
Vol 11 ◽  
pp. 271-275
Author(s):  
Kakuya Hasegawa ◽  
Hideo Kondo ◽  
Hiroshi Umeda ◽  
Hitoshi Nishimaki
Keyword(s):  

Author(s):  
R Curran ◽  
T P Stewart ◽  
T J T Whittaker

The matching of a Wells air turbine to an oscillating water column (OWC) is addressed, with particular reference to design synthesis at the Islay prototype wave power converter. The level of damping applied by the turbine must optimize the hydraulic performance of the OWC in order to facilitate efficient conversion from wave power to pneumatic power. Furthermore, a Wells turbine is only able to convert pneumatic power to mechanical power over a limited range of flow coefficients. Therefore, the efficient operational range of the turbine must extend over a sufficient and optimal proportion of the range of flow coefficients generated by the OWC. Suitable analytical models that describe the behaviour of the system are presented and subsequently the wave conditions and conversion performance at the Islay plant are outlined in order to exemplify the design synthesis to be achieved.


Author(s):  
F. J. M. Farley

A new derivation is given of an equation, relating the capture width of a wave power converter to the polar diagram of the waves generated by the device. The pattern of waves in the lee of the device is calculated in detail.


1999 ◽  
Vol 1999 (4) ◽  
pp. 73-78
Author(s):  
Tomiji WATABE ◽  
Hirotaka YOKOUCHI ◽  
Hideo KONDO ◽  
Masaru INOYA ◽  
Mamoru KUDO

Nature ◽  
1975 ◽  
Vol 256 (5517) ◽  
pp. 478-479 ◽  
Author(s):  
K. BUDAR ◽  
J. FALNES

Sign in / Sign up

Export Citation Format

Share Document