A novel broadband transition of Rectangular waveguide-to-Coplanar Waveguide without dielectric substrate

Author(s):  
Jianqin Deng ◽  
Wanshun Jiang ◽  
Yuemin Ning
Author(s):  
YunYan Zhou ◽  
NianShun Zhao ◽  
RenXia Ning ◽  
Jie Bao

Abstract A compact coplanar waveguide-fed monopole antenna is presented in this paper. The proposed antenna is composed of three monopole branches. In order to achieve the miniaturization, the longest branch was bent. The antenna is printed on an FR4 dielectric substrate, having a compact size of 0.144λ0 × 0.105λ0 × 0.003λ0 at its lowest resonant frequency of 900 MHz. The multiband antenna covers five frequency bands: 820–990 MHz, 1.87–2.08 GHz, 2.37–2.93 GHz, 3.98–4.27 GHz, and 5.47–8.9 GHz, which covers the entire radio frequency identification bands (860–960 MHz, 2.4–2.48 GHz, and 5.725–5.875 GHz), Global System for Mobile Communications (GSM) bands (890–960 MHz and 1.850–1.990 GHz), WLAN bands (2.4–2.484 GHz and 5.725–5.825 GHz), WiMAX band (2.5–2.69 GHz), X-band satellite communication systems (7.25–7.75 GHz and 7.9–8.4 GHz), and sub 6 GHz in 5G mobile communication system (3.3–4.2 GHz and 4.4–5.0 GHz). Also, the antenna has good radiation characteristics in the operating band, which is nearly omnidirectional. Both the simulated and experimental results are presented and compared and a good agreement is established. The proposed antenna operates in five frequency bands with high gain and good radiation characteristics, which make it a suitable candidate in terminal devices with multiple communication standards.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Xue-Xia Yang ◽  
Guan-Nan Tan ◽  
Bing Han ◽  
Hai-Gao Xue

A novel millimeter wave coplanar waveguide (CPW) fed Fabry-Perot (F-P) antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS) and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth ofS11less than −10 dB is from 34 to 37.7 GHz (10.5%), and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.


2015 ◽  
Vol 781 ◽  
pp. 41-44 ◽  
Author(s):  
Nor Hidayu Shahadan ◽  
Muhammad Ramlee Kamarudin ◽  
Noor Ainniesafina Zainal ◽  
Jamal Nasir ◽  
Mohsen Khalily ◽  
...  

This paper presents the investigation on rectangular dielectric resonator antenna (RDRA) using three different feeding techniques that are microstrip slot aperture (MSA), microstrip line (ML) and open-end coplanar waveguide (OECPW). In order to increase the RDRA size and gain for 5G applications, the higher-order mode was used to excite the RDRA at the frequency resonant 28 GHz. Duroid dielectric substrate was used with a thickness of 0.254 mm, a permittivity of 2.2 and a loss tangent of 0.0009. Verification of the comparison was done by simulation using Ansoft HFSS. The simulated result for reflection coefficients, bandwidth, gain, radiation pattern and E-field strength was analyzed and compared.


Sign in / Sign up

Export Citation Format

Share Document