A numerical investigation on the mechanism of bluff-body lean blowout

Author(s):  
Fan Gong ◽  
Yong Huang ◽  
Fang Wang ◽  
Xia Huang
Author(s):  
Amir Ali Montakhab ◽  
Benjamin Akih Kumgeh

Abstract This paper investigates the effects of the inlet turbulence intensity (ITI) on the dynamics of a bluff-body stabilized flame operating very close to its blow-off condition. This work is motivated by the understanding that more stringent regulations on combustion-generated emission have forced the industry to design combustion systems that operate at very fuel-lean conditions. Combustion at very lean conditions, however, induces flame instability that can ultimately lead to flame extinction. The dynamics of the flame at lean conditions can therefore be very sensitive to boundary conditions. Here, a numerical investigation is conducted using Large Eddy Simulation method to understand the flame sensitivity to inlet turbulence intensity. Combustion is accounted for through the transport of chemical species. The sensitivity to inlet turbulence is assessed by carrying out simulations in which the inlet turbulence is varied in increments of 5%. It is observed that while the inlet intensity of 5% causes blow-off, further increased to 10% preserves a healthy flame on account of greater heat release arising from greater and balanced entrainment of combustible mixtures into the flame zone just behind the bluff-body. This balanced stabilization is again lost as the inlet turbulence intensity is further increased to 15%. Since experimental data pertaining to the topic of this paper are rare, the reasonableness of the combination of models is first checked by validating Volvo propane bluff-body flame, whereby reasonable agreement is observed. This study will advance our understanding of the sensitivity of bluff-body flames to boundary conditions specifically to the inlet turbulent boundary condition at near critical blow-off flame conditions.


Fuel ◽  
2020 ◽  
Vol 266 ◽  
pp. 117008 ◽  
Author(s):  
Liuyong Chang ◽  
Zhang Cao ◽  
Bo Fu ◽  
Yuzhen Lin ◽  
Lijun Xu
Keyword(s):  

Author(s):  
Arijit Bhattacharya ◽  
Bikash Gupta ◽  
Satyajit Hansda ◽  
Zohadul Haque ◽  
Ashish Kumar ◽  
...  

Abstract Strict emission norms in the last few decades have paved the path for adaptation of new low NoX emission alternatives to power generation and aircraft propulsion. Lean combustion is a very promising and practicable technology for reducing NOX reduction and also have very high fuel efficiency. However, lean combustion technology suffers from inherent combustion instabilities that are manifested under different conditions, most importantly, thermoacoustic instability and lean blowout. Lean blowout occurs when a gas turbine combustor operating close to lean limit, for lowest NoX emission, faces abrupt changes in fuel homogeneity, quality or flow rate. While many work have been done in thermo-acoustic instability and flame propagation in annular combustors, studies in lean blowout in annular combustors are very limited. The lean limit of combustors are not fixed and is dependent on fuel characteristics and operating condition including environmental effects. So accurate online prediction of lean limit is very important to keep the combustors operating safely near lean limit. Recent works have demonstrated that single burner combustors leave out a significant amounts of physics including interaction of flames from different burners prior to blowout. In this work, a stepped down swirl and bluff body stabilized annular combustor in CB configuration (having chamber and burner), is used as experimental test rig having 4 number of identical burners. Video and heat release data are taken at different conditions as lean blowout is approached. Frequent attachment and reattachment of the flames prior to lift off was seen. As lean blowout is approached, inherent subtle differences in the different burners get amplified when flame becomes sufficiently weak and flame symmetry is broken. As air fuel mixture is made gradually leaner, one by one the flames from different burners elongates although remains partially attached to burner. Further lowering the equivalence ratio results in lift off and merging of the flame fronts of different burners. Three pixel averaged color ratios are extracted from still camera RGB images as flame stability indicators which are, red by blue, red by green and blue by green. The parameters show marked change at the point of lift off as well as at the lean blowout point.


Author(s):  
Vineeth Nair ◽  
R. I. Sujith

The dynamic transitions preceding combustion instability and lean blowout were investigated experimentally in a laboratory scale turbulent combustor by systematically varying the flow Reynolds number. We observe that the onset of combustion-driven oscillations is always presaged by intermittent bursts of high-amplitude periodic oscillations that appear in a near random fashion amidst regions of aperiodic, low-amplitude fluctuations. The onset of high-amplitude, combustion-driven oscillations in turbulent combustors thus corresponds to a transition in dynamics from chaos to limit cycle oscillations through a state characterized as intermittency in dynamical systems theory. These excursions to periodic oscillations become last longer in time as operating conditions approach instability and finally the system transitions completely into periodic oscillations. Such intermittent oscillations emerge through the establishment of homoclinic orbits in the phase space of the global system which is composed of hydrodynamic and acoustic subsystems that operate over different time scales. Such intermittent burst oscillations are also observed in the combustor on increasing the Reynolds number further past conditions of combustion instability towards the lean blowout limit. High-speed flame images reveal that the intermittent states observed prior to lean blowout correspond to aperiodic detachment of the flame from the bluff-body lip. These intermittent oscillations are thus of prognostic value and can be utilized to provide early warning signals to combustion instability as well as lean blowout.


Author(s):  
Anthony J. Morales ◽  
Jonathan Reyes ◽  
Isaac Boxx ◽  
Kareem A. Ahmed
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document