Numerical Investigation of Inlet Turbulence Intensity Effect on a Bluff-Body Stabilized Flame at Near Flame Blow-Off Conditions

2021 ◽  
Author(s):  
Amir Montakhab ◽  
Benjamin Akih-Kumgeh
Author(s):  
Amir Ali Montakhab ◽  
Benjamin Akih Kumgeh

Abstract This paper investigates the effects of the inlet turbulence intensity (ITI) on the dynamics of a bluff-body stabilized flame operating very close to its blow-off condition. This work is motivated by the understanding that more stringent regulations on combustion-generated emission have forced the industry to design combustion systems that operate at very fuel-lean conditions. Combustion at very lean conditions, however, induces flame instability that can ultimately lead to flame extinction. The dynamics of the flame at lean conditions can therefore be very sensitive to boundary conditions. Here, a numerical investigation is conducted using Large Eddy Simulation method to understand the flame sensitivity to inlet turbulence intensity. Combustion is accounted for through the transport of chemical species. The sensitivity to inlet turbulence is assessed by carrying out simulations in which the inlet turbulence is varied in increments of 5%. It is observed that while the inlet intensity of 5% causes blow-off, further increased to 10% preserves a healthy flame on account of greater heat release arising from greater and balanced entrainment of combustible mixtures into the flame zone just behind the bluff-body. This balanced stabilization is again lost as the inlet turbulence intensity is further increased to 15%. Since experimental data pertaining to the topic of this paper are rare, the reasonableness of the combination of models is first checked by validating Volvo propane bluff-body flame, whereby reasonable agreement is observed. This study will advance our understanding of the sensitivity of bluff-body flames to boundary conditions specifically to the inlet turbulent boundary condition at near critical blow-off flame conditions.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1731-1734
Author(s):  
Shao Hua Li ◽  
Ge Wu ◽  
Ling Zhang

In order to investigate the influence of cooling efficiency of leading edge of film cooling blade with different turbulence intensity and blowing ratios,which use method of N-S equation,various blowing ratios of 1.0、1.5 and 2.0,various turbulence intensity of 5%、12%、20% and 30%,it simulated temperature field in leading edge of film cooling blade.The results show: cooling efficiency decreased when blowing ratios is increased.When turbulence intensity is 5%、12% and 20%,it obtains maximum cooling efficiency blowing ratios of 1.0.When turbulence intensity is 30%,it obtains maximum cooling efficiency blowing ratios of 1.5. In blowing ratios of 1.0,cooling efficiency decreased when turbulence increased.But in blowing ratios of 1.5 and 2.0,cooling efficiency increased when turbulence increased.


2021 ◽  
Vol 321 ◽  
pp. 03004
Author(s):  
Shalini Verma ◽  
Akshoy Ranjan Paul ◽  
Anuj Jain ◽  
Firoz Alam

Wind energy is one of the renewable energy resources which is clean and sustainable energy and the wind turbine is used for harnessing energy from the wind. The blades are the key components of a wind turbine to convert wind energy into rotational energy. Recently, wingtip devices are used in the blades of horizontal axis wind turbine (HAWT), which decreases the vortex and drag, while increases the lift and thereby improve the performance of the turbine. In the present study, a winglet is used at the tip of an NREL phase VI wind turbine blade. Solidworks, Pointwise, and Ansys-Fluent are used for geometric modeling, computational grid generation, and CFD simulation, respectively. The computational result obtained using SST k-ω turbulence modeling is well validated with the experimental data of NREL at 5 and 7 m/s of wind speeds. Numerical investigation of stall characteristics is carried out for wingleted blade at higher turbulence intensity (21% and 25%) and angle of attack (00 to 300 at 50 intervals) at 7 m/s wind speed. The result found that wingletd blade delay stall to 150 for both the cases of turbulence intensity. Increasing the turbulence intensity increases the lift coefficient at stall angle but drag coefficient also increases and thus a lower aerodynamic performance (CL/CD ratio = 13) is obtained. Wingleted blade improves the performance as the intensity of vortices is smaller compared to baseline blade


2019 ◽  
Vol 875 ◽  
pp. 699-724 ◽  
Author(s):  
James C. Massey ◽  
Ivan Langella ◽  
Nedunchezhian Swaminathan

The recirculation zone length behind a bluff body is influenced by the turbulence intensity at the base of the body in isothermal flows and also the heat release and its interaction with turbulence in reacting flows. This relationship is observed to be nonlinear and is controlled by the balance of forces acting on the recirculation zone, which arise from the pressure and turbulence fields. The pressure force is directly influenced by the volumetric expansion resulting from the heat release, whereas the change in the turbulent shear force depends on the nonlinear interaction between turbulence and combustion. This behaviour is elucidated through a control volume analysis. A scaling relation for the recirculation zone length is deduced to relate the turbulence intensity and the amount of heat release. This relation is verified using the large eddy simulation data from 20 computations of isothermal flows and premixed flames that are stabilised behind the bluff body. The application of this scaling to flames in an open environment and behind a backward facing step is also explored. The observations and results are explained on a physical basis.


Sign in / Sign up

Export Citation Format

Share Document