scholarly journals Lean blowout detection for bluff-body stabilized flame

Fuel ◽  
2020 ◽  
Vol 266 ◽  
pp. 117008 ◽  
Author(s):  
Liuyong Chang ◽  
Zhang Cao ◽  
Bo Fu ◽  
Yuzhen Lin ◽  
Lijun Xu
Keyword(s):  
Author(s):  
Arijit Bhattacharya ◽  
Bikash Gupta ◽  
Satyajit Hansda ◽  
Zohadul Haque ◽  
Ashish Kumar ◽  
...  

Abstract Strict emission norms in the last few decades have paved the path for adaptation of new low NoX emission alternatives to power generation and aircraft propulsion. Lean combustion is a very promising and practicable technology for reducing NOX reduction and also have very high fuel efficiency. However, lean combustion technology suffers from inherent combustion instabilities that are manifested under different conditions, most importantly, thermoacoustic instability and lean blowout. Lean blowout occurs when a gas turbine combustor operating close to lean limit, for lowest NoX emission, faces abrupt changes in fuel homogeneity, quality or flow rate. While many work have been done in thermo-acoustic instability and flame propagation in annular combustors, studies in lean blowout in annular combustors are very limited. The lean limit of combustors are not fixed and is dependent on fuel characteristics and operating condition including environmental effects. So accurate online prediction of lean limit is very important to keep the combustors operating safely near lean limit. Recent works have demonstrated that single burner combustors leave out a significant amounts of physics including interaction of flames from different burners prior to blowout. In this work, a stepped down swirl and bluff body stabilized annular combustor in CB configuration (having chamber and burner), is used as experimental test rig having 4 number of identical burners. Video and heat release data are taken at different conditions as lean blowout is approached. Frequent attachment and reattachment of the flames prior to lift off was seen. As lean blowout is approached, inherent subtle differences in the different burners get amplified when flame becomes sufficiently weak and flame symmetry is broken. As air fuel mixture is made gradually leaner, one by one the flames from different burners elongates although remains partially attached to burner. Further lowering the equivalence ratio results in lift off and merging of the flame fronts of different burners. Three pixel averaged color ratios are extracted from still camera RGB images as flame stability indicators which are, red by blue, red by green and blue by green. The parameters show marked change at the point of lift off as well as at the lean blowout point.


Author(s):  
Vineeth Nair ◽  
R. I. Sujith

The dynamic transitions preceding combustion instability and lean blowout were investigated experimentally in a laboratory scale turbulent combustor by systematically varying the flow Reynolds number. We observe that the onset of combustion-driven oscillations is always presaged by intermittent bursts of high-amplitude periodic oscillations that appear in a near random fashion amidst regions of aperiodic, low-amplitude fluctuations. The onset of high-amplitude, combustion-driven oscillations in turbulent combustors thus corresponds to a transition in dynamics from chaos to limit cycle oscillations through a state characterized as intermittency in dynamical systems theory. These excursions to periodic oscillations become last longer in time as operating conditions approach instability and finally the system transitions completely into periodic oscillations. Such intermittent oscillations emerge through the establishment of homoclinic orbits in the phase space of the global system which is composed of hydrodynamic and acoustic subsystems that operate over different time scales. Such intermittent burst oscillations are also observed in the combustor on increasing the Reynolds number further past conditions of combustion instability towards the lean blowout limit. High-speed flame images reveal that the intermittent states observed prior to lean blowout correspond to aperiodic detachment of the flame from the bluff-body lip. These intermittent oscillations are thus of prognostic value and can be utilized to provide early warning signals to combustion instability as well as lean blowout.


Author(s):  
Anthony J. Morales ◽  
Jonathan Reyes ◽  
Isaac Boxx ◽  
Kareem A. Ahmed
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Hongtao Zheng ◽  
Zhibo Zhang ◽  
Yajun Li ◽  
Zhiming Li

Lean blowout (LBO) limit is one of the most important combustor parameters. A new method named Feature-Parameter-Criterion (FPC) for predicting LBO limit has been put forward in the present work. A computational fluid dynamics (CFD) software FLUENT has been used to simulate the process of LBO of gas turbine combustor and bluff body burner. And “M” flame has been proposed as the portent for predicting lean blowout of gas turbine combustor. Effects of flow velocity, air temperature, droplet averaged-diameter, and flow distribution between swirlers and primary holes on the LBO limit of gas turbine combustor have been researched by use of Feature-Parameter-Criterion in this paper. The effects of fuel air mixture velocity and different structures on bluff body LBO limit have also been analyzed in the present work by use of FPC. The results show that the simulation of LBO limit based on FPC is in good agreement with the experiment data (the errors are about 5%) and this method is reliable for engineering applications.


2020 ◽  
Vol 37 (4) ◽  
pp. 343-352
Author(s):  
P. Maran ◽  
S. Boopathi ◽  
P. Gowtham ◽  
S. Chidambaram

AbstractIn the present work, LBO limits for methane-air combustion stabilized by a V-Gutter have been predicted by a hybrid method using numerical simulation and empirical relations. The numerical simulations have been carried out to study the stable methane-air combustion and temperature gradients at exit and recirculation region in a model gas turbine afterburner with a planar V-Gutter as a bluff body for four inlet air pressure conditions and three V-Gutter angles. The calculated average exit gas temperature (AEGT) and the average gas temperature in recirculation region have been used for predicting the blowout conditions. An empirical method based on Feature Section Criterion has been used to determine Fuel-Air Ratio (FAR) at blowout conditions very accurately from the numerically calculated average temperature in the central recirculation zone (CRZ).The predicted Fuel-Air Ratio (FAR) at lean blowout conditions has been compared with the experimental results obtained for the same conditions and are found to be in good agreement.


Author(s):  
Khaled M. Shebl

Measurements of the lean blowout equivalence ratio (Φoverall,b) along with the numerical simulations of flame structure and dynamics of the flow field for coaxial burner configurations are reported. The burner comprises central mixture (air+liquefied petroleum gas) issuing either through six holes distributed radially each of 2mm diameter or through a circular single port of area equal to the total areas of the six holes. A bluff-body stabilizer is attached to provide recirculation of the coaxial air surrounding the central flame. The study covers the effect of the central injection configuration with emphasis on the multijet on the overall lean equivalence ratio at which flame is extinguished. The dynamics of the flow field for the multiflame configurations were identified and compared with the single flame, using the generalized finite-rate chemistry model of FLUENT 6.2 with the detailed chemical reaction mechanism defined by GRI-MECH 3.0 and other mechanisms for the higher carbon species. The computed flow field of the multijet flame provides an extra intermediate vortex in addition to the two counter-rotating vortices observed for cases of the single central stream configuration. Such a vortex is believed to enhance the stability characteristics for all the test flames in the form of reduced experimental Φoverall,b-values.


2022 ◽  
Author(s):  
Michael E. Tonarely ◽  
Max K. Fortin ◽  
Tommy Genova ◽  
Anthony Morales ◽  
Bernhard Stiehl ◽  
...  

2019 ◽  
Vol 203 ◽  
pp. 31-45 ◽  
Author(s):  
Anthony J. Morales ◽  
Ian M. Lasky ◽  
Marissa K. Geikie ◽  
Christian A. Engelmann ◽  
Kareem A. Ahmed

Sign in / Sign up

Export Citation Format

Share Document