Momentum transfer cross section for oxygen molecule by electron transport coefficients in the O/sub 2/-Ar mixtures and in pure O/sub 2/ molecule

Author(s):  
B.-H. Jeon ◽  
Sung-Chul Ha ◽  
S.-K. Paek ◽  
Y. Nakamura
1987 ◽  
Vol 40 (3) ◽  
pp. 347 ◽  
Author(s):  
ZLj Petrovic ◽  
RW Crompton

Measurements of electron drift velocities have been made in pure helium and in a helium-hydrogen mixture in order to check the available inelastic cross sections for hydrogen. Although drift velocities in mixtures with helium as the buffer gas are less,sensitive to inelastic scattering by hydrogen than those with argon, the accuracy with which the momentum transfer cross section for helium is known enables the check to be made with virtually no error arising from uncertainty in the momentum transfer cross section for the buffer gas, in contrast to the situation when argon is used. A difference techrtique has been used to minimise the effect of systematic errors in the measurements. The results support the rotational and vibrational cross sections derived from the transport coefficients measured in pure hydrogen.


1993 ◽  
Vol 46 (2) ◽  
pp. 249 ◽  
Author(s):  
MJ Brennan ◽  
KF Ness

The momentum transfer cross section for electrons in krypton has been derived over the energy range Q-4 eV from an analysis of drift velocity and DT/I-' data for hydrogen-krypton mixtures. At energies in the vicinity of the Ramsauer-Townsend minimum, the present work differs significantly from derivations based on analyses of drift velocity data alone. The overall uncertainty in the derived cross section reflects the experimental errors in the transport coefficients, the uncertainty in the cross sections used to represent the hydrogen component in the mixtures, and the uncertainty associated with the X2 minimisation. The present cross section is compared with recent theoretical calculations and other experimental derivations.


1969 ◽  
Vol 22 (6) ◽  
pp. 715 ◽  
Author(s):  
RW Crompton ◽  
DK Gibson ◽  
AI McIntosh

The results of electron drift and diffusion measurements in parahydrogen have been analysed to determine the cross sections for momentum transfer and for rotational and vibrational excitation. The limited number of possible excitation processes in parahydrogen and the wide separation of the thresholds for these processes make it possible to determine uniquely the J = 0 → 2 rotational cross section from threshold to 0.3 eV. In addition, the momentum transfer cross section has been determined for energies less than 2 eV and it is shown that, near threshold, a vibrational cross section compatible with the data must lie within relatively narrow limits. The problems of uniqueness and accuracy inherent in the swarm method of cross section analysis are discussed. The present results are compared with other recent theoretical and experimental determinations; the agreement with the most recent calculations of Henry and Lane is excellent.


Sign in / Sign up

Export Citation Format

Share Document