scholarly journals A Swarm Experiment in He–H2 Mixtures to Examine Vibrational Excitation of H2 by Electron Impact

1987 ◽  
Vol 40 (3) ◽  
pp. 347 ◽  
Author(s):  
ZLj Petrovic ◽  
RW Crompton

Measurements of electron drift velocities have been made in pure helium and in a helium-hydrogen mixture in order to check the available inelastic cross sections for hydrogen. Although drift velocities in mixtures with helium as the buffer gas are less,sensitive to inelastic scattering by hydrogen than those with argon, the accuracy with which the momentum transfer cross section for helium is known enables the check to be made with virtually no error arising from uncertainty in the momentum transfer cross section for the buffer gas, in contrast to the situation when argon is used. A difference techrtique has been used to minimise the effect of systematic errors in the measurements. The results support the rotational and vibrational cross sections derived from the transport coefficients measured in pure hydrogen.

1969 ◽  
Vol 22 (6) ◽  
pp. 715 ◽  
Author(s):  
RW Crompton ◽  
DK Gibson ◽  
AI McIntosh

The results of electron drift and diffusion measurements in parahydrogen have been analysed to determine the cross sections for momentum transfer and for rotational and vibrational excitation. The limited number of possible excitation processes in parahydrogen and the wide separation of the thresholds for these processes make it possible to determine uniquely the J = 0 → 2 rotational cross section from threshold to 0.3 eV. In addition, the momentum transfer cross section has been determined for energies less than 2 eV and it is shown that, near threshold, a vibrational cross section compatible with the data must lie within relatively narrow limits. The problems of uniqueness and accuracy inherent in the swarm method of cross section analysis are discussed. The present results are compared with other recent theoretical and experimental determinations; the agreement with the most recent calculations of Henry and Lane is excellent.


1988 ◽  
Vol 41 (4) ◽  
pp. 573 ◽  
Author(s):  
JP England ◽  
MT Elford ◽  
RW Crompton

Measurements of electron drift velocities have been made in 1�160% and 2�892% hydrogen-neon mixtures at 294 K and values of EI N from 0�12 to 1�7 Td. The measurements are highly sensitive to the region of the threshold of the v = 0 → 1 vibrational excitation cross section for hydrogen and have enabled more definitive tests of proposed cross sections to be made than was possible using drift velocity data for H2−He and H2−Ar mixtures. The theoretical v = 0 → 1 vibrational excitation cross section of Morrison et al. (1987) is shown to be incompatible with the present measurements. A new set of hydrogen cross sections has been derived from the available electron swarm measurements in pure hydrogen and hydrogen mixtures.


1995 ◽  
Vol 48 (3) ◽  
pp. 357 ◽  
Author(s):  
Y Nakamura

The drift velocity and longitudinal diffusion coefficient of electrons in 0�2503% and 1� 97% C02-Ar mixtures were measured for 0�03 ~ E/N ~ 20 Td. The measured electron swarm parameters in the mixtures were used to derive a set of consistent vibrational excitation cross sections for the C02 molecule. Analysis of electron swarms in pure C02 using the present vibrational excitation cross sections was also carried out in order to determine a new momentum transfer cross section for the C02 molecule.


1988 ◽  
Vol 41 (5) ◽  
pp. 701 ◽  
Author(s):  
JP England ◽  
MT Elford

Measurements of electron drift velocities have been made in 0�4673% and 1�686% hydrogenkrypton mixtures at 293 K and values of E/ N from 0�08 to 2�5 Td with an estimated uncertainty of <�0�7%. The data have been used in conjunction with the H2 cross sections of England et aL (1988) to derive the momentum transfer cross section for krypton over the energy range 0�05 to 6�0 eV. The drift velocity data have also been used to test the Kr momentum transfer cross sections of Koizumi et aL (1986) and Hunter (personal communication 1988). The cross section of Koizumi et aL is clearly incompatible with the present measurements while the cross section of Hunter has been used to predict these measurements to within 1% to 3%.


1993 ◽  
Vol 46 (2) ◽  
pp. 249 ◽  
Author(s):  
MJ Brennan ◽  
KF Ness

The momentum transfer cross section for electrons in krypton has been derived over the energy range Q-4 eV from an analysis of drift velocity and DT/I-' data for hydrogen-krypton mixtures. At energies in the vicinity of the Ramsauer-Townsend minimum, the present work differs significantly from derivations based on analyses of drift velocity data alone. The overall uncertainty in the derived cross section reflects the experimental errors in the transport coefficients, the uncertainty in the cross sections used to represent the hydrogen component in the mixtures, and the uncertainty associated with the X2 minimisation. The present cross section is compared with recent theoretical calculations and other experimental derivations.


1991 ◽  
Vol 44 (6) ◽  
pp. 647 ◽  
Author(s):  
JP England ◽  
MT Elford

The Bradbury-Nielsen time-of-flight method has been used to measure electron drift velocities at 573 K in pure mercury vapour, a mixture of 46�80% helium-53� 20% mercury vapour and a mixture of 9�37% nitrogen-90� 63% mercury vapour. The E/N and pressure ranges used were O� 2 to 1� 5 Td and 5�4 to 15�2 kPa for pure mercury vapour, 0 �08 to 3�0 Td and 5 �40 to 26�88kPa for the mixture containing helium and 0�06 to 5�0Td and 3�33 to 16�67kPa for the mixture containing nitrogen. It is shown that the use of mixtures significantly reduces the dependence of the measured drift velocity on the pressure, due to the effect of mercury dimers, from that measured in pure mercury vapour. An iterative procedure to derive the momentum transfer cross section for electrons in mercury vapour over the range 0�04 to 4 eV with an uncertainty between �5 and 10% is described. It is concluded that previously published momentum transfer cross sections for mercury vapour derived from drift velocity data are significantly in error, due to diffusion effects and the procedure used to correct for the influence of dimers. The present cross section is in good agreement with the semi-empirical calculations of Walker (personal communication).


1977 ◽  
Vol 30 (1) ◽  
pp. 61 ◽  
Author(s):  
HB Milloy ◽  
RW Crompton ◽  
JA Rees ◽  
AG Robertson

The momentum transfer cross section for electron-argon collisions in the range 0–4 eV has been derived from an analysis of recent measurements of DT/μ as a function of E/N at 294 K (Milloy and Crompton 1977a) and W as a function of E/N at 90 and 293 K (Robertson 1977). Modified effective range theory was used in the fitting procedure at low energies. An investigation of the range of validity of this theory indicated that the scattering length and effective range were uniquely determined ,and hence the cross section could be accurately extrapolated to zero energy. It is concluded that for ε ≤ 0.1 eV the error in !he cross section is less than � 6 % and in the range 0.4 ≤ ε (eV) ≤ 0.4 the error is less than � 8 %. In the range 0.1 < ε (eV) < 0.4 the presence of the minimum makes it difficult to determine the errors in the cross section but it is estimated that they are less than −20 %, +12 %. It is demonstrated that no other reported cross sections are compatible with the experimental results used in the present derivation.


1984 ◽  
Vol 37 (1) ◽  
pp. 23 ◽  
Author(s):  
ZLj Petrovic ◽  
RW Crompton ◽  
GN Haddad

Negative differential conductivity in gases has been studied using simple models of elastic and inelastic collision cross sections for electron scattering. The use of such models has demonstrated features of the cross sections that lead to the phenomenon, and shown that it can occur without a Ramsauer–Townsend minimum (and even without a sharply rising momentum-transfer cross section) or a special combination of inelastic cross sections.


Sign in / Sign up

Export Citation Format

Share Document