Effect of ATH filler content on the performance of silicone rubber by inclined plane tracking and erosion test method

Author(s):  
N. Vasudev ◽  
S. Ganga ◽  
R.S. Shivakumara Aradhya ◽  
B.Lalitha Pai
Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3449
Author(s):  
Alhaytham Y. Alqudsi ◽  
Refat A. Ghunem ◽  
Eric David

This paper investigates the effect of ground and fumed silica fillers on suppressing DC erosion in silicone rubber. Fumed silica and ground silica fillers are incorporated in silicone rubber at different loading levels and comparatively analyzed in this study. Outcomes of the +DC inclined plane tracking erosion test indicate a better erosion performance for the fumed silica filled composite despite having a lower thermal conductivity compared to the ground silica composite. Results of the simultaneous thermogravimetric and thermal differential analyses are correlated with inclined plane tracking erosion test outcomes suggesting that fumed silica suppresses depolymerization and promotes radical based crosslinking in silicone rubber. This finding is evident as higher residue is obtained with the fumed silica filler despite being filled at a significantly lower loading level compared to ground silica. The surface residue morphology obtained, and the roughness determined for the tested samples of the composites in the dry-arc resistance test indicate the formation of a coherent residue with the fumed silica filled composite. Such coherent residue could act as a barrier to shield the unaffected material underneath the damaged surface during dry-band arcing, thereby preventing progressive erosion. The outcomes of this study suggest a significant role for fumed silica promoting more interactions with silicone rubber to suppress DC erosion compared to ground silica fillers.


Author(s):  
P. Sarkar ◽  
A. Haddad ◽  
R. T. Waters ◽  
H. Griffiths ◽  
N. Harid ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1087 ◽  
Author(s):  
Ping Chen ◽  
Xilin Wang ◽  
Xun Li ◽  
Qishen Lyu ◽  
Naixiao Wang ◽  
...  

Silicone rubber material is widely used in high-voltage external insulation systems due to its excellent hydrophobicity and hydrophobicity transfer performance. However, silicone rubber is a polymeric material with a poor ability to resist electrical tracking and erosion; therefore, some fillers must be added to the material for performance enhancement. The inclined plane test is a standard method used for evaluating the tracking and erosion resistance by subjecting the materials to a combination of voltage stress and contaminate droplets to produce failure. This test is time-consuming and difficult to apply in field inspection. In this paper, a new and faster way to evaluate the tracking and erosion resistance performance is proposed using laser-induced breakdown spectroscopy (LIBS). The influence of filler content on the tracking and erosion resistance performance was studied, and the filler content was characterized by thermogravimetric analysis and the LIBS technique. In this paper, the tracking and erosion resistance of silicone rubber samples was correctly classified using principal component analysis (PCA) and neural network algorithms based on LIBS spectra. The conclusions of this work are of great significance to the performance characterization of silicone rubber composite materials.


Sign in / Sign up

Export Citation Format

Share Document