Secure Communication Scheme of VANET with Privacy Preserving

Author(s):  
Ren Junn Hwang ◽  
Yu-Kai Hsiao ◽  
Yen-Fu Liu
Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 647
Author(s):  
Bin Ma ◽  
Shichun Yang ◽  
Zheng Zuo ◽  
Bosong Zou ◽  
Yaoguang Cao ◽  
...  

The rapid development of intelligent networked vehicles (ICVs) has brought many positive effects. Unfortunately, connecting to the outside exposes ICVs to security threats. Using secure protocols is an important approach to protect ICVs from hacker attacks and has become a hot research area for vehicle security. However, most of the previous studies were carried out on V2X networks, while those on in-vehicle networks (IVNs) did not involve Ethernet. To this end, oriented to the new IVNs based on Ethernet, we designed an efficient secure scheme, including an authentication scheme using the Scalable Service-Oriented Middleware over IP (SOME/IP) protocol and a secure communication scheme modifying the payload field of the original SOME/IP data frame. The security analysis shows that the designed authentication scheme can provide mutual identity authentication for communicating parties and ensure the confidentiality of the issued temporary session key; the designed authentication and secure communication scheme can resist the common malicious attacks conjointly. The performance experiments based on embedded devices show that the additional overhead introduced by the secure scheme is very limited. The secure scheme proposed in this article can promote the popularization of the SOME/IP protocol in IVNs and contribute to the secure communication of IVNs.


Author(s):  
Zheng Guang Zhang ◽  
Hong Wen ◽  
Huan Huan Song ◽  
Yixin Jiang ◽  
Jin Ling Zhang ◽  
...  

Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1687 ◽  
Author(s):  
Mahmood A. Al-shareeda ◽  
Mohammed Anbar ◽  
Selvakumar Manickam ◽  
Iznan H. Hasbullah

The security and privacy issues in vehicular ad hoc networks (VANETs) are often addressed with schemes based on either public key infrastructure, group signature, or identity. However, none of these schemes appropriately address the efficient verification of multiple VANET messages in high-density traffic areas. Attackers could obtain sensitive information kept in a tamper-proof device (TPD) by using a side-channel attack. In this paper, we propose an identity-based conditional privacy-preserving authentication scheme that supports a batch verification process for the simultaneous verification of multiple messages by each node. Furthermore, to thwart side-channel attacks, vehicle information in the TPD is periodically and frequently updated. Finally, since the proposed scheme does not utilize the bilinear pairing operation or the Map-To-Point hash function, its performance outperforms other schemes, making it viable for large-scale VANETs deployment.


Sign in / Sign up

Export Citation Format

Share Document