Trend-guided Small Hydropower System Power Prediction Based on Extreme Learning Machine

Author(s):  
Chunjie Lian ◽  
Hua Wei ◽  
Shengchao Qin ◽  
Zongsheng Li
2012 ◽  
Vol 608-609 ◽  
pp. 564-568 ◽  
Author(s):  
Yi Hui Zhang ◽  
He Wang ◽  
Zhi Jian Hu ◽  
Meng Lin Zhang ◽  
Xiao Lu Gong ◽  
...  

Extreme learning machine (ELM) is a new and effective single-hidden layer feed forward neural network learning algorithm. Extreme learning machine only needs to set the number of hidden layer nodes of the network, and there is no need to adjust the neural network input weights and the hidden units bias, and it generates the only optimum solution, so it has the advantage of fast learning and good generalization ability. And the back propagation (BP) neural network is the most maturely applied. This paper has introduced the extreme learning machine into the wind power prediction. By comparing the wind power prediction method using the BP neural network. Study shows that the extreme learning machine has better prediction accuracy and shorter model training time.


2018 ◽  
Vol 29 (1) ◽  
pp. 877-893 ◽  
Author(s):  
Dounia El Bourakadi ◽  
Ali Yahyaouy ◽  
Jaouad Boumhidi

Abstract Renewable energies constitute an alternative to fossil energies for several reasons. The microgrid can be assumed as the ideal way to integrate a renewable energy source in the production of electricity and give the consumer the opportunity to participate in the electricity market not just like a consumer but also like a producer. In this paper, we present a multi-agent system based on wind and photovoltaic power prediction using the extreme learning machine algorithm. This algorithm was tested on real weather data taken from the region of Tetouan City in Morocco. The process aimed to implement a microgrid located in Tetouan City and composed of different generation units (solar and wind energies were combined together to increase the efficiency of the system) and storage units (batteries were used to ensure the availability of power on demand as much as possible). In the proposed architecture, the microgrid can exchange electricity with the main grid; therefore, it can buy or sell electricity. Thus, the goal of our multi-agent system is to control the amount of power delivered or taken from the main grid in order to reduce the cost and maximize the benefit. To address uncertainties in the system, we use fuzzy logic control to manage the flow of energy, to ensure the availability of power on demand, and to make a reasonable decision about storing or selling electricity.


Sign in / Sign up

Export Citation Format

Share Document