Developing machine learning-based models to estimate time to failure for PHM

Author(s):  
Chunsheng Yang ◽  
Takayuki Ito ◽  
Yubin Yang ◽  
Jie Liu
Author(s):  
John O’Donnell ◽  
Hwan-Sik Yoon

Abstract In recent years, there has been a growing interest in the connectivity of vehicles. This connectivity allows for the monitoring and analysis of large amount of sensor data from vehicles during their normal operations. In this paper, an approach is proposed for analyzing such data to determine a vehicle component’s remaining useful life named time-to-failure (TTF). The collected data is first used to determine the type of performance degradation and then to train a regression model to predict the health condition and performance degradation rate of the component using a machine learning algorithm. When new data is collected later for the same component in a different system, the trained model can be used to estimate the time-to-failure of the component based on the predicted health condition and performance degradation rate. To validate the proposed approach, a quarter-car model is simulated, and a machine learning algorithm is applied to determine the time-to-failure of a failing shock absorber. The results show that a tap-delayed nonlinear autoregressive network with exogenous input (NARX) can accurately predict the health condition and degradation rate of the shock absorber and can estimate the component’s time-to-failure. To the best of the authors’ knowledge, this research is the first attempt to determine a component’s time-to-failure using a machine learning algorithm.


Author(s):  
Anahid Jalali ◽  
Clemens Heistracher ◽  
Alexander Schindler ◽  
Bernhard Haslhofer ◽  
Tanja Nemeth ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4228 ◽  
Author(s):  
Michail Nikolaevich Brykov ◽  
Ivan Petryshynets ◽  
Catalin Iulian Pruncu ◽  
Vasily Georgievich Efremenko ◽  
Danil Yurievich Pimenov ◽  
...  

This article aims to discusses machine learning modelling using a dataset provided by the LANL (Los Alamos National Laboratory) earthquake prediction competition hosted by Kaggle. The data were obtained from a laboratory stick-slip friction experiment that mimics real earthquakes. Digitized acoustic signals were recorded against time to failure of a granular layer compressed between steel plates. In this work, machine learning was employed to develop models that could predict earthquakes. The aim is to highlight the importance and potential applicability of machine learning in seismology The XGBoost algorithm was used for modelling combined with 6-fold cross-validation and the mean absolute error (MAE) metric for model quality estimation. The backward feature elimination technique was used followed by the forward feature construction approach to find the best combination of features. The advantage of this feature engineering method is that it enables the best subset to be found from a relatively large set of features in a relatively short time. It was confirmed that the proper combination of statistical characteristics describing acoustic data can be used for effective prediction of time to failure. Additionally, statistical features based on the autocorrelation of acoustic data can also be used for further improvement of model quality. A total of 48 statistical features were considered. The best subset was determined as having 10 features. Its corresponding MAE was 1.913 s, which was stable to the third decimal point. The presented results can be used to develop artificial intelligence algorithms devoted to earthquake prediction.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Néstor Rodríguez-Padial ◽  
Marta Marín ◽  
Rosario Domingo

The uncertainty of demand has led production systems to become increasingly complex; this can affect the availability of the machines and thus their maintenance. Therefore, it is necessary to adequately manage the information that facilitates decision-making. This paper presents a system for making decisions related to the design of customized maintenance plans in a production plant. This paper addresses this tactical goal and aims to provide greater knowledge and better predictions by projecting reliable behavior in the medium-term, integrating this new functionality into classic Balance Scorecards, and making it possible to extend their current measuring function to a new aptitude: predicting evolution based on historical data. In the proposed Custom Balance Scorecard design, an exploratory data phase is integrated with another analysis and prediction phase using Principal Component Analysis algorithms and Machine Learning that uses Artificial Neural Network algorithms. This new extension allows better control over the maintenance function of an industrial plant in the medium-term with a yearly horizon taken over monthly intervals which allows the measurement of the indicators of strategic productive areas and the discovery of hidden behavior patterns in work orders. In addition, this extension enables the prediction of indicator outcomes such as overall equipment efficiency and mean time to failure.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Author(s):  
Shai Shalev-Shwartz ◽  
Shai Ben-David
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document