Transmission path optimization method combining sensitivity analysis with breadth first search theory suitable for large scale direct electricity trade

Author(s):  
Bike Xue ◽  
Fei Shi ◽  
Xinhong Shi ◽  
Jie Yu ◽  
Lili Liu
Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 381
Author(s):  
Mi Lin ◽  
Lixin Fu ◽  
Shakeel Ahmed ◽  
Qiong Wang ◽  
Yaoxian Zheng ◽  
...  

We propose a type of polarization-independent circulator based on a composite rod of ferrite and plasma materials in a two-dimensional photonic crystal (PhC) slab. Only one composite rod was set at the center of the structure to provide circulation for both TE- and TM-polarized waves. Additionally, to improve the performance of the circulator, three additional rods were inserted to improve the coupling condition between the center magneto-optical microcavity and the corresponding waveguides. Finite element method was used to calculate the characteristics of the structure and the Nelder–Mead optimization method was employed to obtain the optimum parameters. The results show that a low insertion loss (~0.22 dB) and high isolation (~14 dB) can be achieved in our structure for waves of both TE and TM polarizations. The idea presented here may be useful for designing compact polarization devices in large-scale integrated photonic circuits.


2022 ◽  
Vol 73 ◽  
pp. 102245
Author(s):  
Shintaro Iwamura ◽  
Yoshiki Mizukami ◽  
Takahiro Endo ◽  
Fumitoshi Matsuno

Author(s):  
Guang Dong ◽  
Zheng-Dong Ma ◽  
Gregory Hulbert ◽  
Noboru Kikuchi

The topology optimization method is extended for the optimization of geometrically nonlinear, time-dependent multibody dynamics systems undergoing nonlinear responses. In particular, this paper focuses on sensitivity analysis methods for topology optimization of general multibody dynamics systems, which include large displacements and rotations and dynamic loading. The generalized-α method is employed to solve the multibody dynamics system equations of motion. The developed time integration incorporated sensitivity analysis method is based on a linear approximation of two consecutive time steps, such that the generalized-α method is only applied once in the time integration of the equations of motion. This approach significantly reduces the computational costs associated with sensitivity analysis. To show the effectiveness of the developed procedures, topology optimization of a ground structure embedded in a planar multibody dynamics system under dynamic loading is presented.


Author(s):  
H. Torab

Abstract Parameter sensitivity for large-scale systems that include several components which interface in series is presented. Large-scale systems can be divided into components or sub-systems to avoid excessive calculations in determining their optimum design. Model Coordination Method of Decomposition (MCMD) is one of the most commonly used methods to solve large-scale engineering optimization problems. In the Model Coordination Method of Decomposition, the vector of coordinating variables can be partitioned into two sub-vectors for systems with several components interacting in series. The first sub-vector consists of those variables that are common among all or most of the elements. The other sub-vector consists of those variables that are common between only two components that are in series. This study focuses on a parameter sensitivity analysis for this special case using MCMD.


Author(s):  
Mads Baandrup ◽  
Ole Sigmund ◽  
Niels Aage

<p>This work applies a ultra large scale topology optimization method to study the optimal structure of bridge girders in cable supported bridges.</p><p>The current classic orthotropic box girder designs are limited in further development and optimiza­ tion, and suffer from substantial fatigue issues. A great disadvantage of the orthotropic girder is the loads being carried one direction at a time, thus creating stress hot spots and fatigue problems. Hence, a new design concept has the potential to solve many of the limitations in the current state­ of-the-art.</p><p>We present a design method based on ultra large scale topology optimization. The highly detailed structures and fine mesh-discretization permitted by ultra large scale topology optimization reveal new design features and previously unseen eff ects. The results demonstrate the potential of gener­ ating completely different design solutions for bridge girders in cable supported bridges, which dif­ fer significantly from the classic orthotropic box girders.</p><p>The overall goal of the presented work is to identify new and innovative, but at the same time con­ structible and economically reasonable, solutions tobe implemented into the design of future cable supported bridges.</p>


Sign in / Sign up

Export Citation Format

Share Document