The development and formulation of a power flow using d - q reference frame components

Author(s):  
S. A. Saleh
Keyword(s):  
2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Essam Lauibi Esmail

The concept of potential power efficiency is introduced as the efficiency of an epicyclic gear train (EGT) measured in any moving reference frame. The conventional efficiency can be computed in a carrier-moving reference frame in which the gear carrier appears relatively fixed. In principle, by attaching the reference frame to an appropriate link, torques can be calculated with respect to each input, output, or (relatively) fixed link in the EGT. Once the power flow direction is obtained from the potential power ratio, the torque ratios are obtained from the potential power efficiencies, the particular expression of the efficiency of the EGT is found in a simple manner. A systematic methodology for the efficiency analysis of one and two degree-of-freedom (DOF) EGTs is described, and 14 ready-to-use efficiency formulas are derived for 2DOF gear pair entities (GPEs). This paper includes also a discussion on the redundancy of the efficiency formulas used for 1DOF GPEs. An incomplete in the efficiency formulas in previous literature, which make them susceptible to wrong application, is brought to light.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1730
Author(s):  
Luis Ibarra ◽  
Pedro Ponce ◽  
Raja Ayyanar ◽  
Arturo Molina

The interconnection of new generating and storing devices to the power grid imposes the necessity of synchronizing, so the power flow can be manipulated and distributed. In the presence of an increasingly perturbed electric grid, many proposals of novel and modified synchronization techniques attained enough robustness to deal with known perturbations. However, such proposals exhibit drawbacks on their own, leaving open enhancement opportunities, mostly over their discrete implementation—e.g., sampling issues and not-considered inter/harmonics—and their inherent complexity—e.g., the need for frequency adaptability. In this work, three traditional synchronous reference frame (SRF) phase-locked loops (PLL) are modified to implement discrete filtering, such as the well-known proposals based on moving average filters (MAFs), to avoid the problems mentioned above, known for affecting the MAF’s performance. This proposal makes use of discrete, efficient units modularly assembled to yield a signal’s average, based on elliptic half-band filters. The proposed PLLs were tested and exhibited clear advantages—robustness against frequency disturbances—over MAF-based equivalents at standardized tests over a typical simulation environment, setting through this work an initial milestone for its verification and further incorporation in more complex synchronization topologies.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


2011 ◽  
Author(s):  
Mark Mills ◽  
Stefan Van Der Stigchel ◽  
Andrew Hollingworth ◽  
Michael D. Dodd

Sign in / Sign up

Export Citation Format

Share Document