Optimized design of inner potential waveform of PMSM for low-speed & high-torque drive systems

Author(s):  
Zhang Bingyi ◽  
Feng Guihong ◽  
Wang Fengxiang ◽  
Wang Yiquan ◽  
Wang Lifeng ◽  
...  
2021 ◽  
pp. 107110072110031
Author(s):  
Ryan O’Leary ◽  
Ian M. Foran ◽  
David J. Dalstrom

Level of Evidence: Level V, expert opinion.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 488
Author(s):  
Yerganat Khojakhan ◽  
Kyoung-Min Choo ◽  
Junsin Yi ◽  
Chung-Yuen Won

In this paper, a stator inductance identification process is proposed. The process is based on a three-level neutral-point-clamped (NPC) inverter-fed induction motor (IM) drive with a standstill condition. Previously, a low-speed alternating current (AC) injection test for stator inductance identification was proposed to overcome practical problems in conventional identification methods for three-level NPC inverter-based IM drives. However, the low-speed AC injection test-based identification method has some problems if a heavy load or mechanical brake is connected, as these can forcibly bring the rotor to a standstill during parameter identification. Since this low-speed testing-based identification assumes the motor torque is considerably lower in low-speed operations, some inaccuracy is inevitable in this kind of standstill condition. In this paper, the proposed current injection speed generator is based on the previously studied low-speed test-based stator inductance identification method, but the proposed approach gives more accurate estimates under the aforementioned standstill conditions. The proposed method regulates the speed for sinusoidal low-frequency AC injection on the basis of the instantaneous reactive and air-gap active power ratio. This proposed stator inductance identification method is more accurate than conventional fixed low-frequency AC signal injection identification method for three-level NPC inverter-fed IM drive systems with a locked-rotor standstill condition. The proposed method’s accuracy and reliability were verified by simulation and experiment using an 18.5 kW induction motor.


Author(s):  
Yusheng Hu ◽  
Liyi Li ◽  
Bin Chen ◽  
Yong Xiao ◽  
Meiyang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document