Automated Eye-in-Hand Robot-3D Scanner Calibration for Low Stitching Errors

Author(s):  
Harikrishnan Madhusudanan ◽  
Xingjian Liu ◽  
Wenyuan Chen ◽  
Dahai Li ◽  
Linghao Du ◽  
...  
Author(s):  
Xingjian Liu ◽  
Harikrishnan Madhusudanan ◽  
Wenyuan Chen ◽  
Dahai Li ◽  
Ji Ge ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Timo Homburg ◽  
Anja Cramer ◽  
Laura Raddatz ◽  
Hubert Mara

AbstractMotivated by the increased use of 3D acquisition of objects by cultural heritage institutions, we were investigating ontologies and metadata schemes for the acquisition process to provide details about the 3D capturing, which can be combined with preexisting ontologies describing an object. Therefore we divided the 3D capturing workflow into common steps starting with the object being placed in front of a 3D scanner to preparation and publication of the 3D datasets and/or derived images. While the proposed ontology is well defined on a coarse level of detail for very different techniques, e.g. Stucture from Motion and LiDAR we elaborated the metadata scheme in very fine detail for 3D scanners available at our institutions. This includes practical experiments with measurement data from past and current projects including datasets published at Zenodo as guiding examples and the source code for their computation. Additionally, the free and Open Source GigaMesh Software Framework’s analysis and processing methods have been extended to provide metadata about the 3D processing steps like mesh cleaning as well as 2D image generation. Finally, we discuss the current limitations and give an outlook about future extensions.


2021 ◽  
Vol 11 (2) ◽  
pp. 594
Author(s):  
Teodor Tóth ◽  
Patrik Varga ◽  
Branko Štefanovič ◽  
Lucia Bednarčíková ◽  
Marek Schnitzer ◽  
...  

The paper deals with the separation of the third cervical vertebra using the software VGStudio MAX, Mimics, and inVesalius. During the separation, various parameters of the threshold were used to determine the effect. The comparison of models from Mimics and inVesalius to VGStudio MAX showed that the cumulative variance distribution for 95% surface coverage is less than 0.935 mm. When comparing medically oriented software, Mimics and inVesalius, the deviation was less than 0.356 mm. The model was made of polylactic acid (PLA) material on a low-cost 3D printer, Prusa i3 MK2.5 MMU1. The printed model was scanned by four scanners: Artec Eva, 3Shape D700, Steinbichler Comet L3D, and Creaform EXAscan. The outputs from the scanners were compared to the reference model (standard tessellation language (STL) model for 3D printing) as well as to the scanner with the best accuracy (3Shape). Compared to the publications below, the analysis of deviations was evaluated on the entire surface of the model and not on selected dimensions. The cumulative variance distribution for comparing the output from the 3D scanner with the reference model, as well as comparing the scanners, shows that the deviation for 95% of the surface coverage is at the level of 0.300 mm. Since the model of the vertebra is planned for education and training, the used software and technologies are suitable for use in the design and the production process.


2014 ◽  
Vol 705 ◽  
pp. 164-168
Author(s):  
Sang Wook Park ◽  
Hee Young Maeng ◽  
Ju Wook Park

Recently, automatic 3D scanning devices are commonly researched and developed for better productivity of the reverse engineering fields. In this paper, a 3D scanner utilizing a spherical coordinate system was designed and analyzed using FEM analysis. The system was designed for optimal performance, high precision, minimal deflection, and speed of data collection. FEM analysis allowed us to properly design the system to achieve these goals, with focus on the deflection of the cantilever arm. Results of the FEM analysis and figures showing the apparatus design are provided. Successive prototypes are shown to increase in overall performance and reliability through improved design and analysis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Koudai Nagata ◽  
Kei Fuchigami ◽  
Noriyuki Hoshi ◽  
Mihoko Atsumi ◽  
Katsuhiko Kimoto ◽  
...  

Abstract Background Implant treatment using guided surgery is becoming widespread in clinical dental practice. Furthermore, the development of digital technology has enabled the use of intraoral scanners (IOSs) to fabricate surgical guide plates. The objective of this study was to compare the accuracy of guided surgery using the silicone impression method with a three-dimensional (3D) scanner and the digital impression method with IOS for one side of the mandibular free end. In addition, we compared the accuracy of tooth-supported vs tooth/mucosa-supported surgical guide plates. Results The accuracy of the tooth-supported surgical guide plate using the new IOS method instead of the method of obtaining impressions with conventional silicone resulted in better measurements of 3D deviation at the crest, 3D deviation at the apex, and angular deviation. In terms of the accuracy of the tooth/mucosa-supported surgical guide plate, there were no significant differences in all measurements. The surgical guide plate using an IOS and the tooth/mucosa-supported surgical guide plate may enable more accurate guided surgery. Conclusion Tooth/mucosa-supported guided surgery involving preparation with an IOS may result in more accurate implant surgery.


2021 ◽  
Author(s):  
Daqian Cheng ◽  
Haowen Shi ◽  
Albert Xu ◽  
Michael Schwerin ◽  
Michelle Crivella ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document