scholarly journals Structured-light 3D scanning of exhibited historical clothing—a first-ever methodical trial and its results

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.

2021 ◽  
Vol 13 (3) ◽  
pp. 111-116
Author(s):  
Nikolaos Papas ◽  
◽  
Konstantinos Tsongas ◽  
Dimitrios Karolidis ◽  
Dimitrios Tzetzis ◽  
...  

Reverse engineering and in particular three-dimensional digitization have become an essential part of the documentation of archaeological findings. 3D scanning produces a high-precision digital reference document. The factors that influence the quality of the 3D scanned data are the scanned object’s surface colour, its glossiness and geometry, and the ambient light during the scanning process. However, the actual equipment and scanning technologies are of primary importance. The current paper presents a qualitative and quantitative comparison between two 3D scanning devices of different technologies; structured light 3D scanning and laser 3D scanning. The benchmark for this comparison is an ancient Roman vase from the city of Thessaloniki, Greece. The object was scanned with every possible setting on each scanner, but only one configuration of settings on each device was selected for the final comparison. The main criterion for the final selection of the two 3D models acquired with the use of the two technologies was the proximity in the number of points and polygons produced for digitally restoring the ancient vase in the best possible way. The results indicate important differences regarding the accuracy of the final digital model. The laser technology produced better accuracy but with a significant cost in scanning time and model data size. On the other hand, the structured light technology achieved the optimal combination of scanning quality and accuracy, along with reduced acquisition time of scan data.


2011 ◽  
Vol 6 ◽  
pp. 338-345
Author(s):  
Francesco Guerra ◽  
Paolo Vernier

Actually geometrics’ science offers new opportunities and interesting applications in the field of Cultural Heritage. These applications are strictly related to preservation, restoration but even to cataloging and reproducing a monument that no longer has its original integrity.  The possibility of obtaining 3D data, of such a model close to reality, enables us to realize studies that sometimes are too complex or impossible. The paper will describe the study of a monumental arch, the Arco dei Gavi, built in Verona during the I sec. A.C., that was destroyed in 1805 by the Napoleonic army, and its wooden model that was realized in 1813 and it has a very important role concerning the monument’s reconstruction. The purpose is to realize two threedimensional models which can be comparable to each other, two models with recognizable differences, similarities and discontinuities about shapes and single elements that compose the monument. It should also be noted that some original parts of the monument have not been relocated but are badly preserved in a museum: the 3D digital model helps to identify these parts in their original location. The main steps of the work can be summarized in: collecting the historical documentation of Arco dei Gavi and its representations; identifying proper instruments (laser scanning and photogrammetric hardware and software); surveying the Arch and its wooden model; identifying a unique and shared reference system; comparing both digital models related to the same scale; choosing a three-dimensional representation to emphasize the results; reallocation of outstanding pieces (virtual anastylosis).


Author(s):  
A. Georgopoulos

The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information, related to monuments and artefacts, into relational data bases and its use for various purposes, other than just geometric documentation is also described and presented. In order to help the reader understand the above, several characteristic examples are presented and their methodology explained and their results evaluated.


Author(s):  
Alexander Alexeevich Galushkin ◽  
Sofia Lvovna Gonobobleva ◽  
Vadim Alexandrovich Parfenov ◽  
Anton Alexandrovich Zhuravlev

Abstract This article discusses the creation of a 3D archive and physical copies of paper reliefs (estamages). A matrix of the estampage is fabricated by the combined use of 3D scanning technology and additive technologies which can then be used for the documentation and conservation of the original estampage. In order to digitize the relief, an optical 3D scanner based on structured light was used and the processing of the 3D model is discussed in detail. Scanning data is uploaded into the microprocessor of a 3D laser printer using stereolithography technology which then creates a conservation matrix. The accuracy of relief reproduction is assessed by comparing its 3D model with 3D models of replicas obtained with the help of 3D printers. The experimental research showed that it is possible to create 3D archives and reproduction of reliefs. This approach is fundamentally new in the practice of museums and archives.


Author(s):  
Sterling P. Newberry

The beautiful three dimensional representation of small object surfaces by the SEM leads one to search for ways to open up the sample and look inside. Could this be the answer to a better microscopy for gross biological 3-D structure? We know from X-Ray microscope images that Freeze Drying and Critical Point Drying give promise of adequately preserving gross structure. Can we slice such preparations open for SEM inspection? In general these preparations crush more readily than they slice. Russell and Dagihlian got around the problem by “deembedding” a section before imaging. This some what defeats the advantages of direct dry preparation, thus we are reluctant to accept it as the final solution to our problem. Alternatively, consider fig 1 wherein a freeze dried onion root has a window cut in its surface by a micromanipulator during observation in the SEM.


2021 ◽  
Vol 11 (12) ◽  
pp. 5321
Author(s):  
Marcin Barszcz ◽  
Jerzy Montusiewicz ◽  
Magdalena Paśnikowska-Łukaszuk ◽  
Anna Sałamacha

In the era of the global pandemic caused by the COVID-19 virus, 3D digitisation of selected museum artefacts is becoming more and more frequent practice, but the vast majority is performed by specialised teams. The paper presents the results of comparative studies of 3D digital models of the same museum artefacts from the Silk Road area generated by two completely different technologies: Structure from Motion (SfM)—a method belonging to the so-called low-cost technologies—and by Structured-light 3D Scanning (3D SLS). Moreover, procedural differences in data acquisition and their processing to generate three-dimensional models are presented. Models built using a point cloud were created from data collected in the Afrasiyab museum in Samarkand (Uzbekistan) during “The 1st Scientific Expedition of the Lublin University of Technology to Central Asia” in 2017. Photos for creating 3D models in SfM technology were taken during a virtual expedition carried out under the “3D Digital Silk Road” program in 2021. The obtained results show that the quality of the 3D models generated with SfM differs from the models from the technology (3D SLS), but they may be placed in the galleries of the vitrual museum. The obtained models from SfM do not have information about their size, which means that they are not fully suitable for archiving purposes of cultural heritage, unlike the models from SLS.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Timo Homburg ◽  
Anja Cramer ◽  
Laura Raddatz ◽  
Hubert Mara

AbstractMotivated by the increased use of 3D acquisition of objects by cultural heritage institutions, we were investigating ontologies and metadata schemes for the acquisition process to provide details about the 3D capturing, which can be combined with preexisting ontologies describing an object. Therefore we divided the 3D capturing workflow into common steps starting with the object being placed in front of a 3D scanner to preparation and publication of the 3D datasets and/or derived images. While the proposed ontology is well defined on a coarse level of detail for very different techniques, e.g. Stucture from Motion and LiDAR we elaborated the metadata scheme in very fine detail for 3D scanners available at our institutions. This includes practical experiments with measurement data from past and current projects including datasets published at Zenodo as guiding examples and the source code for their computation. Additionally, the free and Open Source GigaMesh Software Framework’s analysis and processing methods have been extended to provide metadata about the 3D processing steps like mesh cleaning as well as 2D image generation. Finally, we discuss the current limitations and give an outlook about future extensions.


2000 ◽  
Author(s):  
Joseph M. Bauer ◽  
David J. Beebe

Abstract A technique for determining the three dimensional motions of hydrogel structures in microchannels is introduced. In developing this technique, we have adapted microscopic particle image velocimetry (μPIV), a method for measuring velocity fields in microfluidic devices. The motions of 1 μm fluorescent seed particles that are incorporated into a hydrogel microstructure (200 μm tall × 400 μm diameter) are tracked over several expansion cycles using microscopy. Combining measurements taken in different planes produces a three-dimensional representation of the motions present during volume changes can be reconstructed. By providing cross sections of the local deformation rates in hydrogel microstructures, this technique allows for the optimization of device designs as well as providing a better understanding of the processes by which hydrogels change volume under mechanical constraints.


Sign in / Sign up

Export Citation Format

Share Document