Automatic Speed Transmission Ratio of Linear Actuator

Author(s):  
D. Balaji ◽  
S. John Powl ◽  
J. Vijayaraghavan ◽  
N. Amarabalan
2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


2020 ◽  
Vol 13 (4) ◽  
pp. 352-365
Author(s):  
Guangxin Wang ◽  
Lili Zhu ◽  
Peng Wang ◽  
Jia Deng

Background: Nutation drive is being extensively investigated due to its ability to achieve a high reduction ratio with a compact structure and the potential for low vibration, high efficiency and design flexibility. However, many problems including the difficulty to process the inner bevel gear, less number of teeth in engagement and not being suitable for high-power transmission have restricted its development. Objective: The purpose of this paper is to analyze the contact strength of a patent about a new nutation drive developed based on meshing between two face gears, which has the advantages of both face gear and nutation drive, including large transmission ratio, large coincidence, small size, compact structure and strong bearing capacity. Methods: Based on the meshing principle and basic structure of the nutation face gear drive, the contact strength of nutation face gear transmission is analyzed by the Hertz contact analysis method and FEM method. Results: The maximum stress values of nutation face gear teeth are compared by two methods, which verify the accuracy of Hertz contact analytical method in calculating the contact strength of nutation face gear teeth. Furthermore, nine groups of three-dimensional models for the nutation face gear drive with a transmission ratio of 52 and different cutter parameters are established. Conclusion: The study analyzes the contact stress of fixed and rotary face gears in meshing with planetary face gears, and obtains the distribution law of contact stress and the influence of the number of teeth and parameters of the cutter on the load-carrying capacity.


Author(s):  
Yang Jie ◽  
Li Haitao ◽  
Rui Chengjie ◽  
Wei Wenjun ◽  
Dong Xuezhu

All of the cutting edges on an hourglass worm gear hob have different shapes and spiral angles. If the spiral angles are small, straight flutes are usually adopted. But for the hob with multiple threads, the absolute values of the negative rake angles at one side of the cutting teeth will greatly affect the cutting performance of the hob if straight flutes are still used. Therefore, spiral flutes are usually adopted to solve the problem. However, no method of determination of the spiral flute of the hourglass worm gear hob has been put forward till now. Based on the curved surface generating theory and the hourglass worm forming principle, a generating method for the spiral flute of the planar double enveloping worm gear hob is put forward in this paper. A mathematical model is built to generate the spiral flute. The rake angles of all cutting teeth of the hob are calculated. The laws of the rake angles of the cutting teeth of four hobs with different threads from one to four threads are analyzed when straight flutes and spiral flutes are adopted respectively. The laws between the value of the negative rake angles of the hob with four threads and the milling transmission ratio are studied. The most appropriate milling transmission ratio for generating the spiral flute is obtained. The machining of the spiral flutes is simulated by a virtual manufacturing system and the results verify the correctness of the method.


2021 ◽  
Vol 1108 (1) ◽  
pp. 012044
Author(s):  
B Supriyo ◽  
S Ariyono ◽  
S Sihono ◽  
B Sumiyarso ◽  
B Tjahyono

Sign in / Sign up

Export Citation Format

Share Document