scholarly journals Design and Implementation of a New CFAR Based on Weighted and Statistical Algorithms

Author(s):  
Thamir Saeed ◽  
Gufran Hatem ◽  
Jafar Abdul Sadah ◽  
Hadi Ziboon

In the radar system, detection represents a basic and important stage in the receiver side. The detection process is based on the thresholding criteria; two philosophies of this criteria, constant and adaptive threshold. The constant threshold is simple in design, but it has a mis-detection and does not control the false alarm rate. As for the adaptive threshold, it is powerful in target detection, and better control of the false alarm rate, where it is called Constant False Alarm Rate (CFAR). Lots of research in the CFAR design, but the gap in the previous works is that there is no CFAR algorithm can be working with all or most environmental fields and all or most target situations.In this paper, The CFAR, which can work with the most environment and most of the target situations, has been presented. The producing the design and implementation of the new practical CFAR processor is presented. Where, the new CFAR is a combination of the properties of three different CFAR algorithm (CA, OSGO, and OSSO), and from two different families; averaging and statistical. Where it has overperformed of it's is 97.25% for simulation and 96.25% for the implementable version for different target situations. The simulation analysis is made by using Matlab 2015, while the implementation is done by using Xilinx Spartan 700 3a.

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2021 ◽  
Vol 13 (9) ◽  
pp. 1703
Author(s):  
He Yan ◽  
Chao Chen ◽  
Guodong Jin ◽  
Jindong Zhang ◽  
Xudong Wang ◽  
...  

The traditional method of constant false-alarm rate detection is based on the assumption of an echo statistical model. The target recognition accuracy rate and the high false-alarm rate under the background of sea clutter and other interferences are very low. Therefore, computer vision technology is widely discussed to improve the detection performance. However, the majority of studies have focused on the synthetic aperture radar because of its high resolution. For the defense radar, the detection performance is not satisfactory because of its low resolution. To this end, we herein propose a novel target detection method for the coastal defense radar based on faster region-based convolutional neural network (Faster R-CNN). The main processing steps are as follows: (1) the Faster R-CNN is selected as the sea-surface target detector because of its high target detection accuracy; (2) a modified Faster R-CNN based on the characteristics of sparsity and small target size in the data set is employed; and (3) soft non-maximum suppression is exploited to eliminate the possible overlapped detection boxes. Furthermore, detailed comparative experiments based on a real data set of coastal defense radar are performed. The mean average precision of the proposed method is improved by 10.86% compared with that of the original Faster R-CNN.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 755
Author(s):  
He Wang ◽  
Yunhong Xin

Wavelet-based Contourlet transform (WBCT) is a typical Multi-scale Geometric Analysis (MGA) method, it is a powerful technique to suppress background and enhance the edge of target. However, in the small target detection with the complex background, WBCT always lead to a high false alarm rate. In this paper, we present an efficient and robust method which utilizes WBCT method in conjunction with kurtosis model for the infrared small target detection in complex background. We mainly made two contributions. The first, WBCT method is introduced as a preprocessing step, and meanwhile we present an adaptive threshold selection strategy for the selection of WBCT coefficients of different scales and different directions, as a result, the most background clutters are suppressed in this stage. The second, a kurtosis saliency map is obtained by using a local kurtosis operator. In the kurtosis saliency map, a slide window and its corresponding mean and variance is defined to locate the area where target exists, and subsequently an adaptive threshold segment mechanism is utilized to pick out the small target from the selected area. Extensive experimental results demonstrate that, compared with the contrast methods, the proposed method can achieve satisfactory performance, and it is superior in detection rate, false alarm rate and ROC curve especially in complex background.


2019 ◽  
Vol 2019 (19) ◽  
pp. 5597-5601 ◽  
Author(s):  
Wenjing Zhao ◽  
Deyue Zou ◽  
Wenlong Liu ◽  
Minglu Jin

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sungho Kim ◽  
Kyung-Tae Kim

Small target detection is very important for infrared search and track (IRST) problems. Grouped targets are difficult to detect using the conventional constant false alarm rate (CFAR) detection method. In this study, a novel multitarget detection method was developed to identify adjacent or closely spaced small infrared targets. The neighboring targets decrease the signal-to-clutter ratio in hysteresis threshold-based constant false alarm rate (H-CFAR) detection, which leads to poor detection performance in cluttered environments. The proposed adjacent target rejection-based robust background estimation can reduce the effects of the neighboring targets and enhance the small multitarget detection performance in infrared images by increasing the signal-to-clutter ratio. The experimental results of the synthetic and real adjacent target sequences showed that the proposed method produces an upgraded detection rate with the same false alarm rate compared to the recent target detection methods (H-CFAR, Top-hat, and TDLMS).


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1635 ◽  
Author(s):  
Xiaoqi Yang ◽  
Kai Huo ◽  
Jianwei Su ◽  
Xinyu Zhang ◽  
Weidong Jiang

Traditional constant false alarm rate (CFAR) methods have shown their potential for foreign object debris (FOD) indication. However, the performance of these methods would deteriorate under the complex clutter background in airport scenes. This paper presents a threshold-improved approach based on the cell-averaging clutter-map (CA-CM-) CFAR and tests it on a millimeter-wave (MMW) radar system. Clutter cases are first classified with variability indexes (VIs). In homogeneous background, the threshold is calculated by the student-t-distributed test statistic; under the discontinuous clutter conditions, the threshold is modified according to current VI conditions, in order to address the performance decrease caused by extended clutter edges. Experimental results verify that the chosen targets can be indicated by the t-distributed threshold in homogeneous background. Moreover, effective detection of the obscured targets could also be achieved with significant detectability improvement at extended clutter edges.


Sign in / Sign up

Export Citation Format

Share Document