Towards a Model-Integrated Runtime Monitoring Infrastructure for Cyber-Physical Systems

Author(s):  
Michael Vierhauser ◽  
Hussein Marah ◽  
Antonio Garmendia ◽  
Jane Cleland-Huang ◽  
Manuel Wimmer
Author(s):  
Márton Búr ◽  
Gábor Szilágyi ◽  
András Vörös ◽  
Dániel Varró

Abstract Smart cyber-physical systems (CPSs) have complex interaction with their environment which is rarely known in advance, and they heavily depend on intelligent data processing carried out over a heterogeneous and distributed computation platform with resource-constrained devices to monitor, manage and control autonomous behavior. First, we propose a distributed runtime model to capture the operational state and the context information of a smart CPS using directed, typed and attributed graphs as high-level knowledge representation. The runtime model is distributed among the participating nodes, and it is consistently kept up to date in a continuously evolving environment by a time-triggered model management protocol. Our runtime models offer a (domain-specific) model query and manipulation interface over the reliable communication middleware of the Data Distribution Service (DDS) standard widely used in the CPS domain. Then, we propose to carry out distributed runtime monitoring by capturing critical properties of interest in the form of graph queries, and design a distributed graph query evaluation algorithm for evaluating such graph queries over the distributed runtime model. As the key innovation, our (1) distributed runtime model extends existing publish–subscribe middleware (like DDS) used in real-time CPS applications by enabling the dynamic creation and deletion of graph nodes (without compile time limits). Moreover, (2) our distributed query evaluation extends existing graph query techniques by enabling query evaluation in a real-time, resource-constrained environment while still providing scalable performance. Our approach is illustrated, and an initial scalability evaluation is carried out on the MoDeS3 CPS demonstrator and the open Train Benchmark for graph queries.


2015 ◽  
Vol 14 (4) ◽  
pp. 1-29 ◽  
Author(s):  
Ramy Medhat ◽  
Borzoo Bonakdarpour ◽  
Deepak Kumar ◽  
Sebastian Fischmeister

Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Sign in / Sign up

Export Citation Format

Share Document