A classification of accelerometer data to differentiate pedestrian state

Author(s):  
Pichaya Prasertsung ◽  
Teerayut Horanont
Keyword(s):  
2009 ◽  
Vol 56 (3) ◽  
pp. 871-879 ◽  
Author(s):  
Stephen J. Preece ◽  
John Yannis Goulermas ◽  
Laurence P. J. Kenney ◽  
David Howard

2020 ◽  
Vol 1 (1) ◽  
pp. 17-21
Author(s):  
Steve Oscar ◽  
◽  
Mohammed Nazim Uddin ◽  

Modern life is becoming more linked to our devices, and work is being done in a more regulated way. As life became more complicated, it is becoming challenging to keep track of human health and fitness, leading to unexpected illnesses and diseases. Moreover, a lack of activity monitoring and corresponding reminders is preventing the adoption of a healthier lifestyle. This research provides a practical approach for identifying Human Activity by using accelerometer data obtained from wearable devices. The model automatically finds patterns among 33 different physical exercises such as running, rowing, cycling, jogging, etc. and correctly identifies them. The principal component analysis algorithm was used on the statistical features to make the system more robust. Classification of the physical exercise was performed on the reduced features using WEKA. The overall accuracy of 85.51% was obtained using the 10-Fold Cross-Validation method and K nearest Neighbor Algorithm while 84% accuracy for Random Forest. The accuracy obtained was better than previous models and could improve recognition systems in monitoring user activity more precisely.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8442
Author(s):  
Esben Lykke Skovgaard ◽  
Jesper Pedersen ◽  
Niels Christian Møller ◽  
Anders Grøntved ◽  
Jan Christian Brønd

With the emergence of machine learning for the classification of sleep and other human behaviors from accelerometer data, the need for correctly annotated data is higher than ever. We present and evaluate a novel method for the manual annotation of in-bed periods in accelerometer data using the open-source software Audacity®, and we compare the method to the EEG-based sleep monitoring device Zmachine® Insight+ and self-reported sleep diaries. For evaluating the manual annotation method, we calculated the inter- and intra-rater agreement and agreement with Zmachine and sleep diaries using interclass correlation coefficients and Bland–Altman analysis. Our results showed excellent inter- and intra-rater agreement and excellent agreement with Zmachine and sleep diaries. The Bland–Altman limits of agreement were generally around ±30 min for the comparison between the manual annotation and the Zmachine timestamps for the in-bed period. Moreover, the mean bias was minuscule. We conclude that the manual annotation method presented is a viable option for annotating in-bed periods in accelerometer data, which will further qualify datasets without labeling or sleep records.


2017 ◽  
Vol 29 (1) ◽  
pp. 26-30
Author(s):  
Alex V. Rowlands

2016 has been an exciting year for research in physical activity, inactivity and health. Recognition of the importance of all physical behaviors (physical activity, sedentary time and sleep) across the 24-hr day continues to grow. Notable advances have included: applications of recent methodological innovations that account for the codependence of the behaviors in the finite 24-hr period showing that the balance of these behaviors is associated with health; methodological innovations focusing on the classification of behaviors and/or quantification of the 24-hr diurnal activity pattern; and a series of systematic reviews that helped provide the evidence base for the release of the innovative 24-hr movement guidelines earlier this year. This commentary focuses on just two of these papers: the first by Goldsmith and colleagues who demonstrate a new statistical method that exploits the time series nature of accelerometer data facilitating new insights into time-specific determinants of children’s activity patterns and associations with health; the second by Tremblay and colleagues who describe the evidence base for associations between each physical behavior and children’s health, the emerging evidence base for associations between the balance of behaviors and health, and development of the world’s first 24-hr movement guidelines.


2018 ◽  
Vol 10 (11) ◽  
pp. 4319-4330 ◽  
Author(s):  
Dario Ortega-Anderez ◽  
Ahmad Lotfi ◽  
Caroline Langensiepen ◽  
Kofi Appiah

Author(s):  
Michal Borsky ◽  
Marion Cocude ◽  
Daryush D. Mehta ◽  
Matias Zanartu ◽  
Jon Gudnason
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document