scholarly journals On Optimization of Sensor Selection for Aircraft Gas Turbine Engines

Author(s):  
R. Mushini ◽  
D. Simon
Author(s):  
M Grujicic ◽  
R Galgalikar ◽  
JS Snipes ◽  
S Ramaswami

This paper addresses the problem of materials selection for springs used to clamp an inner shroud segment to the outer shroud block in utility and industrial gas turbine engines. Clamping is achieved through the application of an initial compressive load to the spring. However, since the spring is subjected to high temperature and oxidizing conditions, it experiences creep and surface oxidation. Both of these processes result in the loss of the compressive load within the spring with time. A material selection procedure is developed, which identifies optimum materials (design variables), with respect to the minimum loss in the clamping-spring load (objective function) for a given set of geometrical constraints (i.e. maximum size of the spring is constrained by the outer-shroud cavity which houses the spring) and functional constraints (force retention should persist over the expected life of the inner-shroud segment). Two material selection procedures are devised: (a) one, fairly rigorous and computationally intensive, based on the use of a finite element analysis; and (b) the other, less rigorous but computationally less expensive, based on the use of a simplified analytical/numerical procedure. In the absence of oxidation, the two approaches yielded different, but mutually consistent, results with identical ranking of the clamping-force candidate materials. The inclusion of the oxidation effects showed that oxidation-induced loss in the spring material increases the extent of clamping-force relaxation and may affect the ranking of the candidate materials.


1997 ◽  
Vol 28 (7-8) ◽  
pp. 536-542
Author(s):  
A. A. Khalatov ◽  
I. S. Varganov

1988 ◽  
Author(s):  
James C. Birdsall ◽  
William J. Davies ◽  
Richard Dixon ◽  
Matthew J. Ivary ◽  
Gary A. Wigell

2020 ◽  
pp. 22-29
Author(s):  
A. Bogoyavlenskiy ◽  
A. Bokov

The article contains the results of the metrological examination and research of the accuracy indicators of a method for diagnosing aircraft gas turbine engines of the D30KU/KP family using an ultra-high-frequency plasma complex. The results of metrological examination of a complete set of regulatory documents related to the diagnostic methodology, and an analysis of the state of metrological support are provided as well. During the metrological examination, the traceability of a measuring instrument (diagnostics) – an ultrahigh-frequency plasma complex – is evaluated based on the scintillation analyzer SAM-DT-01–2. To achieve that, local verification schemes from the state primary standards of the corresponding types of measurements were built. The implementation of measures to eliminate inconsistencies identified during metrological examination allows to reduce to an acceptable level the metrological risks of adverse situations when carrying out aviation activities in industry and air transportation. In addition, the probability of occurrence of errors of the first and second kind in the technological processes of tribodiagnostics of aviation gas turbine engines is reduced when implementing a method that has passed metrological examination in real practice. At the same time, the error in determining ratings and wear indicators provides acceptable accuracy indicators and sufficient reliability in assessing the technical condition of friction units of the D-30KP/KP2/KU/KU-154 aircraft engines.


Author(s):  
O. B. Silchenko ◽  
M. V. Siluyanova ◽  
V. Е. Nizovtsev ◽  
D. A. Klimov ◽  
A. A. Kornilov

The paper gives a brief review of properties and applications of developed extra-hard nanostructured composite materials and coatings based on them. The presentresearch suggestsaerospace applications of nanostructured composite materials based on carbides, carbonitrides and diboridesof transition and refractory metals. To improve the technical and economic performance of gas turbine engines, it is advisable to use new composite structural materials whose basic physicomechanical properties are several times superior to traditional ones. The greatest progress in developing new composites should be expected in the area of materials created on the basis of polymer, metal, intermetallic and ceramic matrices. Currently components and assemblies of gas turbine engines and multiple lighting power units with long operation life and durability will vigorously develop. Next-generation composites are studied in all developed countries, primarily in the United States and Japan.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4214
Author(s):  
Kranthi Kumar Maniam ◽  
Shiladitya Paul

The increased demand for high performance gas turbine engines has resulted in a continuous search for new base materials and coatings. With the significant developments in nickel-based superalloys, the quest for developments related to thermal barrier coating (TBC) systems is increasing rapidly and is considered a key area of research. Of key importance are the processing routes that can provide the required coating properties when applied on engine components with complex shapes, such as turbine vanes, blades, etc. Despite significant research and development in the coating systems, the scope of electrodeposition as a potential alternative to the conventional methods of producing bond coats has only been realised to a limited extent. Additionally, their effectiveness in prolonging the alloys’ lifetime is not well understood. This review summarises the work on electrodeposition as a coating development method for application in high temperature alloys for gas turbine engines and discusses the progress in the coatings that combine electrodeposition and other processes to achieve desired bond coats. The overall aim of this review is to emphasise the role of electrodeposition as a potential cost-effective alternative to produce bond coats. Besides, the developments in the electrodeposition of aluminium from ionic liquids for potential applications in gas turbines and the nuclear sector, as well as cost considerations and future challenges, are reviewed with the crucial raw materials’ current and future savings scenarios in mind.


2020 ◽  
Vol 1675 ◽  
pp. 012111
Author(s):  
A Yu Vasilyev ◽  
O G Chelebyan ◽  
A A Sviridenkov ◽  
E S Domrina ◽  
A A Loginova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document