FloodEye: Real-time flash flood prediction system for urban complex water flow

Author(s):  
Kei Hiroi ◽  
Nobuo Kawaguchi
Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5231
Author(s):  
José Ibarreche ◽  
Raúl Aquino ◽  
R. M. Edwards ◽  
Víctor Rangel ◽  
Ismael Pérez ◽  
...  

This paper presents a system of sensors used in flash flood prediction that offers critical real-time information used to provide early warnings that can provide the minutes needed for persons to evacuate before imminent events. Flooding is one of the most serious natural disasters humans confront in terms of loss of life and results in long-term effects, which often have severely adverse social consequences. However, flash floods are potentially more dangerous to life because there is often little or no forewarning of the impending disaster. The Emergency Water Information Network (EWIN) offers a solution that integrates an early warning system, notifications, and real-time monitoring of flash flood risks. The platform has been implemented in Colima, Mexico covering the Colima and Villa de Alvarez metropolitan area. This platform consists of eight fixed riverside hydrological monitoring stations, eight meteorological stations, nomadic mobile monitoring stations called “drifters” used in the flow, and a sniffer with data muling capability. The results show that this platform effectively compiles and forwards information to decision-makers, government officials, and the general public, potentially providing valuable minutes for people to evacuate dangerous areas.


2014 ◽  
Vol 95 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Patrick Broxton ◽  
Peter A. Troch ◽  
Mike Schaffner ◽  
Carl Unkrich ◽  
David Goodrich

Flash floods can cause extensive damage to both life and property, especially because they are difficult to predict. Flash flood prediction requires high-resolution meteorological observations and predictions, as well as calibrated hydrological models, which should effectively simulate how a catchment filters rainfall inputs into streamflow. Furthermore, because of the requirement of both hydrological and meteorological components in flash flood forecasting systems, there must be extensive data handling capabilities built in to force the hydrological model with a variety of available hydrometeorological data and predictions, as well as to test the model with hydrological observations. The authors have developed a working prototype of such a system, called KINEROS/hsB-SM, after the hydrological models that are used: the Kinematic Erosion and Runoff (KINEROS) and hillslope-storage Boussinesq Soil Moisture (hsB-SM) models. KINEROS is an event-based overland flow and channel routing model that is designed to simulate flash floods in semiarid regions where infiltration excess overland flow dominates, while hsB-SM is a continuous subsurface flow model, whose model physics are applicable in humid regions where saturation excess overland flow is most important. In addition, KINEROS/hsB-SM includes an energy balance snowmelt model, which gives it the ability to simulate flash floods that involve rain on snow. There are also extensive algorithms to incorporate high-resolution hydrometeorological data, including stage III radar data (5 min, 1° by 1 km), to assist in the calibration of the models, and to run the model in real time. The model is currently being used in an experimental fashion at the National Weather Service Binghamton, New York, Weather Forecast Office.


2017 ◽  
Vol 98 (2) ◽  
pp. 361-372 ◽  
Author(s):  
Jonathan J. Gourley ◽  
Zachary L. Flamig ◽  
Humberto Vergara ◽  
Pierre-Emmanuel Kirstetter ◽  
Robert A. Clark ◽  
...  

Abstract This study introduces the Flooded Locations and Simulated Hydrographs (FLASH) project. FLASH is the first system to generate a suite of hydrometeorological products at flash flood scale in real-time across the conterminous United States, including rainfall average recurrence intervals, ratios of rainfall to flash flood guidance, and distributed hydrologic model–based discharge forecasts. The key aspects of the system are 1) precipitation forcing from the National Severe Storms Laboratory (NSSL)’s Multi-Radar Multi-Sensor (MRMS) system, 2) a computationally efficient distributed hydrologic modeling framework with sufficient representation of physical processes for flood prediction, 3) capability to provide forecasts at all grid points covered by radars without the requirement of model calibration, and 4) an open-access development platform, product display, and verification system for testing new ideas in a real-time demonstration environment and for fostering collaborations. This study assesses the FLASH system’s ability to accurately simulate unit peak discharges over a 7-yr period in 1,643 unregulated gauged basins. The evaluation indicates that FLASH’s unit peak discharges had a linear and rank correlation of 0.64 and 0.79, respectively, and that the timing of the peak discharges has errors less than 2 h. The critical success index with FLASH was 0.38 for flood events that exceeded action stage. FLASH performance is demonstrated and evaluated for case studies, including the 2013 deadly flash flood case in Oklahoma City, Oklahoma, and the 2015 event in Houston, Texas—both of which occurred on Memorial Day weekends.


2011 ◽  
Vol 26 (10) ◽  
pp. 1478-1494 ◽  
Author(s):  
Nektarios N. Kourgialas ◽  
George P. Karatzas ◽  
Nikolaos P. Nikolaidis

1987 ◽  
Vol 92 (D8) ◽  
pp. 9615 ◽  
Author(s):  
Konstantine P. Georgakakos

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Konrad Nering

AbstractThis paper describes a fully functional short-term flood prediction system. Its effect has been tested on watershed of Lubieńka river in Małopolska. To use this system it must have a data set also described in this paper. A modification of the system to adopt for predicting flash floods was described. Full operation of the system is shown on example of real flood on Lubieńka river in June 2011.


Sign in / Sign up

Export Citation Format

Share Document