Knee joint cartilage visualization and quantification in normal and osteoarthritis

Author(s):  
M. S. Mallikarjuna Swamy ◽  
M. S. Holi
Keyword(s):  
1998 ◽  
Vol 42 (6) ◽  
pp. 1470-1475 ◽  
Author(s):  
Ralf Stahlmann ◽  
Uta Zippel ◽  
Christian Förster ◽  
Rudolf Schwabe ◽  
Mehdi Shakibaei ◽  
...  

ABSTRACT Sparfloxacin is a fluoroquinolone with improved antibacterial activity against gram-positive pathogens. Like other quinolones, use of this drug is contraindicated in children and adolescents because of its potential chondrotoxicity in juveniles. We performed histological and immunohistochemical studies on the knee joint cartilage in 5-week-old rats after treatment with 600 or 1,800 mg of sparfloxacin/kg of body weight. Treatment with single or multiple oral doses of 600 mg of sparfloxacin/kg was not sufficient to induce joint cartilage lesions. However, five of eight rats treated with a single oral dose of 1,800 mg of sparfloxacin/kg of body weight showed typical cartilage lesions in the femoral part of the knee joint. The concentrations of the drug in plasma measured 0.25, 0.75, 1.5, 3, 6, 12, and 24 h after the administration of an oral dose of 600 mg of sparfloxacin/kg were 6.3 ± 1.8, 9.2 ± 1.7, 9.6 ± 2.7, 13.0 ± 1.8, 12.3 ± 1.6, 3.4 ± 0.4, and 0.30 ± 0.20 mg/liter, respectively (mean ± standard deviation [SD];n = 5 to 6 per group). The concentrations in plasma measured 0.75, 1.5, 3, 6, 24, and 48 h after the administration of an oral dose of 1,800 mg of sparfloxacin/kg were 10.9 ± 1.5, 15.9 ± 1.6, 19.1 ± 1.7, 14.9 ± 3.1, 4.1 ± 0.6, and 0.46 ± 0.37 mg/liter, respectively (mean ± SD;n = 3 to 4 per group). The concentrations of sparfloxacin in joint cartilage were significantly higher at all time points studied (114.8 ± 80, 99.4 ± 31.5, 84.9 ± 16.8, 44.4 ± 13.9, and 14.2 ± 4.8 mg of sparfloxacin/kg at 1.5, 3, 6, 24, and 48 h after the administration of 1,800 mg/kg, respectively). The range of concentrations in bone were similar to the range of concentrations in cartilage (peak, 115 ± 12 mg/kg after 3 h). Our data indicate that chondrotoxic doses of sparfloxacin in juvenile rats are approximately 300 times higher than the doses of sparfloxacin used therapeutically (1,800 versus approximately 6 mg/kg of body weight), but due to species differences in kinetics, concentrations in plasma differ by a factor of only approximately 15. More data on quinolone concentrations in cartilage from animals and humans could provide a better basis for a reasonable risk assessment.


2019 ◽  
Vol 19 (04) ◽  
pp. 1950016
Author(s):  
SHILEI WANG ◽  
LILAN GAO ◽  
CHUNQIU ZHANG ◽  
YANG SONG ◽  
XIZHENG ZHANG ◽  
...  

Knee joint is the main weight bearing tissue of human body, also it is one of the prone parts of the clinical disease. Under different sports conditions, knee joint was loaded at different forms. In this study, the changes of average contact pressure, peak contact pressure, contact area and pressure-sharing regions were researched using the intact and defect pig knee joints under different loading rates and loads, including fast rates and large loads. These data were measured and recorded by usage of the sensor plate that placed between the unilateral meniscus and the femur cartilage during loading process. As for the intact cartilage samples, the average contact pressure and peak contact pressure of the femur cartilage increase with the loading rate, while the contact area is contrast to it. As for defect cartilage samples, it not only emerged stress concentration on the edge of the defect and pressure distribution in joint cavity was different with intact cartilage samples, but also the main bearing region was transferred from the femur cartilage-meniscus contact area to the femur cartilage-tibial cartilage contact area at different loading forms. In different loading stages, the pressure-sharing regions between the cartilage and the meniscus also changes. Different loading rates, different loads and defects will change the mechanical states of the knee joint. In loading forms, the mechanical condition may cause or aggravate damnification of the knee joint cartilage. Therefore, this study is beneficial for promoting and perfecting the research of mechanical properties of knee joint cartilage and provides a theoretical basis for the prevention and treatment of knee cartilage injury.


2009 ◽  
Vol 24 (3) ◽  
pp. 359-364
Author(s):  
Satoshi KOJIMA ◽  
Masahiro HOSO ◽  
Taro MATSUZAKI ◽  
Masanori WATANABE

2014 ◽  
Vol 43 (4) ◽  
pp. 443-452 ◽  
Author(s):  
Bernd Bittersohl ◽  
Harish S. Hosalkar ◽  
Malte Sondern ◽  
Falk R. Miese ◽  
Gerald Antoch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document