"Skil Mate" wearable exoskeleton robot

Author(s):  
Y. Umetani ◽  
Y. Yamada ◽  
T. Morizono ◽  
T. Yoshida ◽  
S. Aoki
2021 ◽  
Vol 54 (3-4) ◽  
pp. 216-230
Author(s):  
Anan Suebsomran

Control of assistive exoskeleton robot recently has to be crucial of development and innovation of medical application. To support daily motions for humans, control application of assistive exoskeleton robot allows for limb movement with increased strength and endurance during patient’s wearable exoskeleton robot application. The interaction between such exoskeleton device and the human body at the connecting joint, especially the knees, is the main interest of this design formation. The assistive device requires to design and to develop into innovation design aspect. This research presents the novel design of an active compliant actuation joint in order to increasing the higher torque of actuation than conventional actuation joint. Control design of the higher torque actuation usually difficult priori to conventional torque control. This will contributed to applying the supervisory control for compliant actuation that verified by experiment method. Then the hybrid Radial Basis Function neural network (RBFNN) and PID were proposed for actuating torque control methods. Experimental results show that the design of supervisory control is get better response, and higher producing torque output than the conventional design. Error of torque control of compliant actuation is not instead of [Formula: see text] N·m for applying supervisory control, RBFNN with PID controller. Indeed, the low electromagnetic interference (EMI) positioning system using LED and photodiode detector is proposed to be usable in medical application.


2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881213 ◽  
Author(s):  
Brahim Brahmi ◽  
Maarouf Saad ◽  
Abdelkrim Brahmi ◽  
Cristobal Ochoa Luna ◽  
Mohammad Habibur Rahman

Rehabilitation robots are a new technology dedicated to the physiotherapy and assistance motion and has aroused great interest in the scientific community. These kinds of robots have shown a high potential in limiting the patient’s disability, increasing its functional movements and helping him/her in daily living activities. This technology is still an emerging area and suffers from many challenges like compliance control and human–robot collaboration. The main challenge addressed in this research is to ensure that the exoskeleton robot provides an appropriate compliance control that allows it to interact perfectly with humans. This article investigates a new compliant control based on a second-order sliding mode with adaptive-gain incorporating time delay estimation. The control uses human inverse kinematics to complete active rehabilitation protocols for an exoskeleton robot with unknown dynamics and unforeseen disturbances. The stability analysis is formulated and demonstrated based on Lyapunov function. An experimental physiotherapy session with three healthy subjects was set up to test the effectiveness of the proposed control, using virtual reality environment.


2021 ◽  
Vol 12 ◽  
pp. 215145932110276
Author(s):  
Kazunori Koseki ◽  
Hirotaka Mutsuzaki ◽  
Kenichi Yoshikawa ◽  
Koichi Iwai ◽  
Yuko Hashizume ◽  
...  

Introduction: The Honda Walking Assist (HWA) is a hip-wearable exoskeleton robot for gait training that assists in hip flexion and extension movements to guide hip joint movements during gait. This study aimed to evaluate the effects of walking exercises with HWA in patients who underwent total knee arthroplasty (TKA). Materials and Methods: This study involved 10 patients (11 knees) in the HWA group and 11 patients (11 knees) in the control group who underwent conventional physical therapy. The patients assigned to the HWA group underwent a total of 17-20 gait training sessions, each lasting approximately 20 min from week 1 to 5 following TKA. Self-selected walking speed (SWS), maximum walking speed (MWS), range of motion (ROM), knee extension and flexion torque, and Western Ontario and McMaster Universities Osteoarthritis Index subscales of pain (WOMAC-p) and physical function (WOMAC-f) scores were measured preoperatively, at 2, 4, and 8 weeks following TKA. Results: Interventions were successfully completed in all patients, with no severe adverse events. A significant difference was noted in the time × group interaction effect between preoperative and week 2 SWS and MWS. Regarding knee function, there was a significant difference in the time × group interaction between preoperative and week 2 active ROM extension; however, no significant difference in knee torque, WOMAC-p, and WOMAC-f scores were observed. In the between-group post hoc analysis, WOMAC-f in the HWA group was higher than that in the control group at week 8. Discussion: Although the control group showed a temporary reduction in SWS and MWS 2 weeks after TKA, the HWA group did not. These results suggest that HWA intervention promotes early improvement in walking ability after TKA. Conclusions: The gait training using HWA was safe and feasible and could be effective for the early improvement of walking ability in TKA patients.


2013 ◽  
Vol 791-793 ◽  
pp. 1199-1202
Author(s):  
Chao Wang ◽  
Yu Lin Wang ◽  
Ming Ma

In order to significantly improve the load capacity of the soldiers and the maneuverability as carrying heavy loads, the mechanism design and simulation of the wearable exoskeleton robot are studied in this paper. Firstly, the mechanism design of the exoskeleton robot is completed and the three-dimensional model of the exoskeleton robot is established. Then, the five-link mathematical model of the exoskeleton robot is established, the dynamics analysis of which is proceed. Finally, through using virtual prototype technology, the walking simulation of the robot is carried out and the results provide a basis for the future work.


2019 ◽  
Vol 8 (1) ◽  
pp. 312-325
Author(s):  
Md. Rasedul Islam ◽  
Md. Assad-Uz-Zaman ◽  
Mohammad Habibur Rahman

Sign in / Sign up

Export Citation Format

Share Document