Design of Interval Type-2 Fuzzy Logic Controller

Author(s):  
Ming-Ying Hsiao ◽  
Tzuu-Hseng S. Li
2021 ◽  
Vol 54 (3-4) ◽  
pp. 303-323
Author(s):  
Amjad J Humaidi ◽  
Huda T Najem ◽  
Ayad Q Al-Dujaili ◽  
Daniel A Pereira ◽  
Ibraheem Kasim Ibraheem ◽  
...  

This paper presents control design based on an Interval Type-2 Fuzzy Logic (IT2FL) for the trajectory tracking of 3-RRR (3-Revolute-Revolute-Revolute) planar parallel robot. The design of Type-1 Fuzzy Logic Controller (T1FLC) is also considered for the purpose of comparison with the IT2FLC in terms of robustness and trajectory tracking characteristics. The scaling factors in the output and input of T1FL and IT2FL controllers play a vital role in improving the performance of the closed-loop system. However, using trial-and-error procedure for tuning these design parameters is exhaustive and hence an optimization technique is applied to achieve their optimal values and to reach an improved performance. In this study, Social Spider Optimization (SSO) algorithm is proposed as a useful tool to tune the parameters of proportional-derivative (PD) versions of both IT2FLC and T1FLC. Two scenarios, based on two square desired trajectories (with and without disturbance), have been tested to evaluate the tracking performance and robustness characteristics of proposed controllers. The effectiveness of controllers have been verified via numerical simulations based on MATLAB/SIMULINK programming software, which showed the superior of IT2FLC in terms of robustness and tracking errors.


Author(s):  
Mahamat Loutfi Imrane ◽  
Achille Melingui ◽  
Joseph Jean Baptiste Mvogo Ahanda ◽  
Fredéric Biya Motto ◽  
Rochdi Merzouki

Some autonomous navigation methods, when implemented alone, can lead to poor performance, whereas their combinations, when well thought out, can yield exceptional performances. We have demonstrated this by combining the artificial potential field and fuzzy logic methods in the framework of mobile robots’ autonomous navigation. In this article, we investigate a possible combination of three methods widely used in the autonomous navigation of mobile robots, and whose individual implementation still does not yield the expected performances. These are as follows: the artificial potential field, which is quick and easy to implement but faces local minima and robustness problems. Fuzzy logic is robust but computationally intensive. Finally, neural networks have an exceptional generalization capacity, but face data collection problems for the learning base and robustness. This article aims to exploit the advantages offered by each of these approaches to design a robust, intelligent, and computationally efficient controller. The combination of the artificial potential field and interval type-2 fuzzy logic resulted in an interval type-2 fuzzy logic controller whose advantage over the classical interval type-2 fuzzy logic controller was the small size of the rule base. However, it kept all the classical interval type-2 fuzzy logic controller characteristics, with the major disadvantage that type-reduction remains the main cause of high computation time. In this article, the type-reduction process is replaced with two layers of neural networks. The resulting controller is an interval type-2 fuzzy neural network controller with the artificial potential field controller’s outputs as auxiliary inputs. The results obtained by performing a series of experiments on a mobile platform demonstrate the proposed navigation system’s efficiency.


Author(s):  
Ade Silvia Handayani ◽  
Nyayu Latifah Husni ◽  
Siti Nurmaini ◽  
Irsyadi Yani

Navigation is one of the typical problem domains occurred in studying swarm robot. This task needs a special ability in avoiding obstacles.  This research presents the navigation techniques using type 1 fuzzy logic and interval type 2 fuzzy logic. A comparison of those two fuzzy logic performances in controlling swarm robot as tools for complex problem modeling, especially for path navigation is presented in this paper.  Each hierarchical of fuzzy logic shows its advantages and disadvantages.  For testing the robustness of type-1 fuzzy logic and interval type-2 fuzzy logic algorithms, 3 robots for the real swarm robot experiment are used.  Each is equipped with one compass sensor, three distance sensors, and one X-Bee communication module.  The experimental results show that type-2 fuzzy logic has better performance than type-1 fuzzy logic.


Author(s):  
Ireneusz Dominik

The main aim of this article is to present the usage of type-2 fuzzy logic controller to control a shape memory actuator. To enhance real-time performance simplified interval fuzzy sets were used. The algorithm was implemented in the ATmega32 microcontroller. The dedicated PC application was also built. The fuzzy logic controller type-2 was tested experimentally by controlling position of the shape memory alloy actuator NM70 which despite its small size distinguishes itself by its strength. The obtained results confirmed that type-2 fuzzy controller performed efficiently with a difficult to control nonlinear plant. The research also proved that interval type-2 controllers, which are a simplified version of the general type-2 controllers, are very efficient. They can handle uncertainties without increasing drastically the computational complexity. Experimental data comparison of the fuzzy logic controller type-2 with type-1 clearly indicates the superiority of the former, especially in reducing overshooting.


Sign in / Sign up

Export Citation Format

Share Document