Spatio-spectral & temporal parameter searching using class correlation analysis and particle swarm optimization for a brain computer interface

Author(s):  
Abdul R Satti ◽  
Damien Coyle ◽  
Girijesh Prasad
2017 ◽  
Vol 25 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Shang-Lin Wu ◽  
Yu-Ting Liu ◽  
Tsung-Yu Hsieh ◽  
Yang-Yin Lin ◽  
Chih-Yu Chen ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1736 ◽  
Author(s):  
Ikhtiyor Majidov ◽  
Taegkeun Whangbo

Single-trial motor imagery classification is a crucial aspect of brain–computer applications. Therefore, it is necessary to extract and discriminate signal features involving motor imagery movements. Riemannian geometry-based feature extraction methods are effective when designing these types of motor-imagery-based brain–computer interface applications. In the field of information theory, Riemannian geometry is mainly used with covariance matrices. Accordingly, investigations showed that if the method is used after the execution of the filterbank approach, the covariance matrix preserves the frequency and spatial information of the signal. Deep-learning methods are superior when the data availability is abundant and while there is a large number of features. The purpose of this study is to a) show how to use a single deep-learning-based classifier in conjunction with BCI (brain–computer interface) applications with the CSP (common spatial features) and the Riemannian geometry feature extraction methods in BCI applications and to b) describe one of the wrapper feature-selection algorithms, referred to as the particle swarm optimization, in combination with a decision tree algorithm. In this work, the CSP method was used for a multiclass case by using only one classifier. Additionally, a combination of power spectrum density features with covariance matrices mapped onto the tangent space of a Riemannian manifold was used. Furthermore, the particle swarm optimization method was implied to ease the training by penalizing bad features, and the moving windows method was used for augmentation. After empirical study, the convolutional neural network was adopted to classify the pre-processed data. Our proposed method improved the classification accuracy for several subjects that comprised the well-known BCI competition IV 2a dataset.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Meiping Wang ◽  
Qi Tian

We developed an effective intelligent model to predict the dynamic heat supply of heat source. A hybrid forecasting method was proposed based on support vector regression (SVR) model-optimized particle swarm optimization (PSO) algorithms. Due to the interaction of meteorological conditions and the heating parameters of heating system, it is extremely difficult to forecast dynamic heat supply. Firstly, the correlations among heat supply and related influencing factors in the heating system were analyzed through the correlation analysis of statistical theory. Then, the SVR model was employed to forecast dynamic heat supply. In the model, the input variables were selected based on the correlation analysis and three crucial parameters, including the penalties factor, gamma of the kernel RBF, and insensitive loss function, were optimized by PSO algorithms. The optimized SVR model was compared with the basic SVR, optimized genetic algorithm-SVR (GA-SVR), and artificial neural network (ANN) through six groups of experiment data from two heat sources. The results of the correlation coefficient analysis revealed the relationship between the influencing factors and the forecasted heat supply and determined the input variables. The performance of the PSO-SVR model is superior to those of the other three models. The PSO-SVR method is statistically robust and can be applied to practical heating system.


2021 ◽  
pp. 207-214
Author(s):  
Yu Qing

Network security situational awareness can integrate all aspects of network security elements. Through correlation analysis, information fusion, situation prediction and other technologies to realize the intelligent analysis and comprehensive decision-making of complex information systems, network security situation awareness can improve the management efficiency and effect of complex networks. In order to solve the problem of parameter optimization of existing situation assessment methods, the parameters of SVM model are optimized based on Particle Swarm Optimization PSO algorithm. This paper presents a network security situation assessment method based on PSO and SVM. Using this algorithm can get a better balance between time-consuming and improving accuracy. At the same time, the index weight is determined according to grey correlation analysis, and the training samples are input to support vector machine for training. In this paper, the improved particle swarm optimization algorithm is used to optimize the parameters of support vector machine to improve the effect of situation assessment. Simulation test results show that the evaluation method improves the effectiveness and accuracy of situation assessment.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


Sign in / Sign up

Export Citation Format

Share Document