Doppler estimation using time reversal mirror for underwater acoustic time-varying multipath channel

Author(s):  
Yifu Luan ◽  
Shefeng Yan ◽  
Ye Qin ◽  
Lijun Xu
Author(s):  
Songzuo Liu ◽  
Habib Hussain Zuberi ◽  
Yi Lou ◽  
Muhmmad Bilal Farooq ◽  
Shahabuddin Shaikh ◽  
...  

AbstractLinear chirp spread spectrum technique is widely used in underwater acoustic communication because of their resilience to high multipath and Doppler shift. Linear frequency modulated signal requires a high spreading factor to nearly reach orthogonality between two pairs of signals. On the other hand, nonlinear chirp spread spectrum signals can provide orthogonality at a low spreading factor. As a result, it improves spectral efficiency and is more insensitive to Doppler spread than the linear counterpart. To achieve a higher data rate, we propose two variants (half cycle sine and full cycle sine) of the M-ary nonlinear sine chirp spread spectrum technique based on virtual time-reversal mirror (VTRM). The proposed scheme uses different frequency bands to transmit chirp, and VTRM is used to improve the bit error rate due to high multipath. Its superior Doppler sensitivity makes it suitable for underwater acoustic communication. Furthermore, the proposed method uses a simple, low-power bank of matched filters; thus, it reduces the overall system complexity. Simulations are performed in different underwater acoustic channels to verify the robustness of the proposed scheme.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3577
Author(s):  
Zhou ◽  
Liu ◽  
Nie ◽  
Yang ◽  
Zhang ◽  
...  

Underwater acoustic communications are challenging because channels are complex, and acoustic waves when propagating in the ocean are subjected to a variety of interferences, such as noise, reflections, scattering and so on. Spread spectrum technique thus has been widely used in underwater acoustic communications for its strong anti-interference ability and good confidentiality. Underwater acoustic channels are typical coherent multipath channels, in which the inter-symbol interference seriously affects the performance of underwater acoustic communications. Time-reversal mirror technique utilizes this physical characteristic of underwater acoustic channels to restrain the inter-symbol interference by reconstructing multipath signals and reduce the influence of channel fading by spatial focusing. This paper presents an M-ary cyclic shift keying spread spectrum underwater acoustic communication scheme based on the virtual time-reversal mirror. Compared to the traditional spread spectrum techniques, this method is more robust, for it uses the M-ary cyclic shift keying spread spectrum to improve the communication rate and uses the virtual time-reversal mirror to ensure a low bit error rate. The performance of this method is verified by simulations and pool experiments.


Sign in / Sign up

Export Citation Format

Share Document