Design and Implementation of a Solar Tracker System with Dual Axis for Photovoltaic Panels in El Oued Region of Algeria

Author(s):  
Youcef Bekakra ◽  
Laid Zellouma ◽  
Hicham Serhoud
2018 ◽  
Vol 57 ◽  
pp. 02003 ◽  
Author(s):  
Wilson E. Sánchez ◽  
Mario P. Jiménez ◽  
Carlos A. Mantilla ◽  
José M. Toro ◽  
Miguel A. Villa ◽  
...  

This investigation describes the design and implementation of a parabolic trough solar collector (PCC) with solar tracking to obtain hot water. The solar radiation available at the installation site is analyzed, followed by the design and construction of the mechanical system, making a series of calculations for the dimensioning of the reflective base, and a stress and deflection analysis of the structure is performed to verify the feasibility of the design in the ANSYS software. An analysis of the solar tracking system is performed, which is dimensioned from the PCC structure to determine the type of solar tracker to implement; The charging system, consisting of a solar panel and a battery, is dimensioned for the power supply of the tracking system; as a last point, for the heating system is determined the amount of water that is able to heat the system from the energy analysis at the installation site, the heating system is based on placing a Heat Pipe, in the focus of the parabola to receive the solar rays reflected by the collector and heat exchange to the water from a thermowell where the heat pipe condenser enters, finally tests are carried out in the PCC implemented obtaining a global efficiency of 16.37%.


eLEKTRIKA ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Harmini Harmini ◽  
Titik Nurhayati

<span>The purpose of this research is to design and implementation Maximum Solar Power Tracking system using photovoltaic panel, in order to increase solar panel efficiency and power. Data collection is done for the condition in Semarang city. The result of the research is expected to be base in planning of solar power system in Semarang city, whether it is for lighting lamp planning and for Solar Home System (SHS). This MPPT system design uses standard 180 degree servo motor to drive photovoltaic panel and control circuit using ATmega IC, while simulation using MATLAB program. Tracking is done by online tracking method by moving the photovoltaic panel to the radiation of the sun. Tracking simulation is done with step 20, 50 and 180 step. The average of voltage generated by system without tracking is 3.97 Volt while the average voltage generated by tracking system is 4.72 Volt. Efficiency between system without tracking and tracking system is 66.28% for tracking system and 78.78% for tracking system</span>


Sign in / Sign up

Export Citation Format

Share Document