Robustness of PD control for transporting quadrotor with payload uncertainties

Author(s):  
Gilang Nugraha Putu Pratama ◽  
Ibnu Masngut ◽  
Adha Imam Cahyadi ◽  
Samiadji Herdjunanto
Keyword(s):  
2021 ◽  
Vol 19 (8) ◽  
pp. 2821-2829
Author(s):  
Jeong-Un Nam ◽  
Yun-Jae Yang ◽  
Tae-Woong Yoon
Keyword(s):  

2018 ◽  
Vol 8 (9) ◽  
pp. 1623 ◽  
Author(s):  
Ke Li ◽  
Yeming Zhang ◽  
Shaoliang Wei ◽  
Hongwei Yue

The friction interference in the pneumatic rotary actuator is the primary factor affecting the position accuracy of a pneumatic rotary actuator servo system. The paper proposes an evolutionary algorithm-based friction-forward compensation control architecture for improving position accuracy. Firstly, the basic equations of the valve-controlled actuator are derived and linearized in the middle position, and the transfer function of the system is further obtained. Then, the evolutionary algorithm-based friction feedforward compensation control architecture is structured, including that the evolutionary algorithm is used to optimize the controller coefficients and identify the friction parameters. Finally, the contrast experiments of four control strategies (the traditional PD control, the PD control with friction feedforward compensation without evolutionary algorithm tuning, the PD control with friction feedforward compensation based on the differential evolution algorithm, and the PD control with friction feedforward compensation based on the genetic algorithm) are carried out on the experimental platform. The experimental results reveal that the evolutionary algorithm-based friction feedforward compensation greatly improves the position tracking accuracy and positioning accuracy, and that the differential evolution-based case achieves better accuracy. Also, the system with the friction feedforward compensation still maintains high accuracy and strong stability in the case of load.


2017 ◽  
Vol 10 (4) ◽  
pp. 935-954 ◽  
Author(s):  
S. D. Panjaitan ◽  
R. Kurnianto ◽  
B.W. Sanjaya ◽  
M. C. Turner

2021 ◽  
Author(s):  
Puren Ouyang ◽  
Yuqi Hu ◽  
Wenhui Yue ◽  
Deshun Liu

Reduction of contour error is a very important issue for high precise contour tracking applications, and many control systems were proposed to deal with contour tracking problems for two/three axial translational motion systems. However, there is no research on cross-coupled contour tracking control for serial multi-DOF robot manipulators. In this paper, the contouring control of multi-DOF serial manipulators is developed for the first time and a new cross-coupled PD (CC-PD) control law is proposed, based on contour errors of the end-effector and tracking errors of the joints. It is a combination of PD control for trajectory tracking at joint level and PD control for contour tracking at the end-effector level. The contour error of the end-effector is transformed to the equivalent tracking errors of the joints using the Jacobian regulation, and the CC-PD control law is implemented in the joint level. Stability analysis of the proposed CC-PD control system is conducted using the Lyapunov method, followed by some simulation studies for linear and nonlinear contour tracking to verify the effectiveness of the proposed CC-PD control system.


Author(s):  
P. R. Ouyang ◽  
Truong Dam

For multi-axis motion control applications, contour tracking is one of the most common control problems encountered by industrial manipulators and robots. In this paper, a position domain PD control method is proposed for the purpose of improving the contour tracking performance. To develop the new control method, the multi-axis motion system is viewed as a master-slave motion system where the master motion is sampled equidistantly and used as an independent variable, while the slave motions are described as functions of the master motion according to the contour tracking requirements. The dynamic model of the multi-axis motion system is developed in the position domain based on the master motion by transforming the original system dynamic equations from the time domain to the position domain. In this control methodology, the master motion will yield zero tracking error for the position as it is used as reference, and only the slave motion tracking errors will affect the final contour tracking errors. The proposed position domain PD controller is successfully examined in a Cartesian robotic system for linear motion tracking and circular contour tracking.


Sign in / Sign up

Export Citation Format

Share Document