A nonlinear state feedback control approach for a Pantograph-Catenary system

Author(s):  
Celso Koiti Ide ◽  
Sorin Olaru ◽  
Pedro Rodriguez-Ayerbe ◽  
Ahmed Rachid
Author(s):  
Hao Chen ◽  
Zhenzhen Zhang ◽  
Huazhang Wang

This paper investigates the problem of robust H ∞ control for linear systems. First, the state-feedback closed-loop control algorithm is designed. Second, by employing the geometric progression theory, a modified augmented Lyapunov–Krasovskii functional (LKF) with the geometric integral interval is established. Then, parameter uncertainties and the derivative of the delay are flexibly described by introducing the convex combination skill. This technique can eliminate the unnecessary enlargement of the LKF derivative estimation, which gives less conservatism. In addition, the designed controller can ensure that the linear systems are globally asymptotically stable with a guaranteed H ∞ performance in the presence of a disturbance input and parameter uncertainties. A liquid monopropellant rocket motor with a pressure feeding system is evaluated in a simulation example. It shows that this proposed state-feedback control approach achieves the expected results for linear systems in the sense of the prescribed H ∞ performance.


2017 ◽  
Vol 29 (3) ◽  
pp. 591-601
Author(s):  
Ryota Hayashi ◽  
◽  
Genki Matsuyama ◽  
Hisanori Amano ◽  
Hitomu Saiki ◽  
...  

[abstFig src='/00290003/14.jpg' width='300' text='Amphibian vehicle maneuvering simulator' ] This study proposes a maneuvering support system for an amphibian vehicle by applying a nonlinear state feedback control law for vehicle trajectory control. We consider that the vehicle should not drift sideways for good driving performance. To derive a nonlinear state feedback control law, we have defined ‘Maneuvering Trajectory’ as an additional reference trajectory that is generated by the driver’s maneuver. We have constructed a Lyapunov-like function for the trajectory control system. In this paper, we construct a vehicle-maneuvering simulator and set a clockwise circular reference trajectory. The efficiency of the proposed maneuvering support system is shown in the maneuvering simulations. We consider the case where the propulsive forces of the vehicle have limited influence on maneuverability. A new warning display system is proposed so that the driver can recognize if his or her maneuver is not suitable. Then, we examine the feasibility of the proposed warning display system through several simulations.


Sign in / Sign up

Export Citation Format

Share Document