High performance production of Bi/sub 2/Te/sub 3/ based thermoelectric materials on the route of the bulk mechanical alloying method

Author(s):  
Y. Iwaisako ◽  
T. Aizawa ◽  
A. Yamamoto ◽  
T. Ohta
Author(s):  
Shuankui Li ◽  
Zhongyuan Huang ◽  
Rui Wang ◽  
Chaoqi Wang ◽  
Wenguang Zhao ◽  
...  

The strong interrelation between electrical and thermo parameters have been regarded as one of the biggest bottlenecks to obtain high-performance thermoelectric materials. Therefore, to explore a general strategy to fully...


2006 ◽  
Vol 88 (9) ◽  
pp. 092104 ◽  
Author(s):  
Heng Wang ◽  
Jing-Feng Li ◽  
Ce-Wen Nan ◽  
Min Zhou ◽  
Weishu Liu ◽  
...  

2018 ◽  
Vol 97 ◽  
pp. 283-346 ◽  
Author(s):  
Zhi-Gang Chen ◽  
Xiaolei Shi ◽  
Li-Dong Zhao ◽  
Jin Zou

2021 ◽  
Author(s):  
Qi Zhang ◽  
Hengda Sun ◽  
Meifang Zhu

Abstract Organic thermoelectric (OTE) materials have been regarded as a potential candidate to harvest waste heat from complex, low temperature surfaces of objects and convert it into electricity. Recently, n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their p-type counterpart. In this review, we discuss aspects that affect the performance of n-type OTEs, and further focus on the effect of planarity of backbone on doping efficiency and eventually the TE performance. We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation. In the outlook part, we conclude forementioned devotions and point out new possibility that may promote the future development of this field.


2019 ◽  
Vol 7 (43) ◽  
pp. 24982-24991 ◽  
Author(s):  
Jingjuan Tan ◽  
Zhanhua Chen ◽  
Dagang Wang ◽  
Shihui Qin ◽  
Xu Xiao ◽  
...  

A generally applicable strategy of balancing the electrical conductivity and Seebeck coefficient for high-performance organic thermoelectric composites by controlled interfacial doping.


2018 ◽  
Vol 6 (41) ◽  
pp. 20454-20462 ◽  
Author(s):  
Juan Li ◽  
Shuai Zhang ◽  
Boyi Wang ◽  
Shichao Liu ◽  
Luo Yue ◽  
...  

Thermoelectric performance can be largely enhanced by forming solid solutions and biaxial strain.


Sign in / Sign up

Export Citation Format

Share Document